Google Cloud Native is in preview. Google Cloud Classic is fully supported.
google-native.ml/v1.Study
Explore with Pulumi AI
Google Cloud Native is in preview. Google Cloud Classic is fully supported.
Creates a study. Auto-naming is currently not supported for this resource.
Create Study Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new Study(name: string, args: StudyArgs, opts?: CustomResourceOptions);@overload
def Study(resource_name: str,
          args: StudyArgs,
          opts: Optional[ResourceOptions] = None)
@overload
def Study(resource_name: str,
          opts: Optional[ResourceOptions] = None,
          study_config: Optional[GoogleCloudMlV1__StudyConfigArgs] = None,
          study_id: Optional[str] = None,
          location: Optional[str] = None,
          project: Optional[str] = None)func NewStudy(ctx *Context, name string, args StudyArgs, opts ...ResourceOption) (*Study, error)public Study(string name, StudyArgs args, CustomResourceOptions? opts = null)type: google-native:ml/v1:Study
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args StudyArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args StudyArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args StudyArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args StudyArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args StudyArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var examplestudyResourceResourceFromMlv1 = new GoogleNative.Ml.V1.Study("examplestudyResourceResourceFromMlv1", new()
{
    StudyConfig = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1__StudyConfigArgs
    {
        Parameters = new[]
        {
            new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfig_ParameterSpecArgs
            {
                Parameter = "string",
                Type = GoogleNative.Ml.V1.GoogleCloudMlV1_StudyConfig_ParameterSpecType.ParameterTypeUnspecified,
                CategoricalValueSpec = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfigParameterSpec_CategoricalValueSpecArgs
                {
                    Values = new[]
                    {
                        "string",
                    },
                },
                ChildParameterSpecs = new[]
                {
                    googleCloudMlV1_StudyConfig_ParameterSpec,
                },
                DiscreteValueSpec = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfigParameterSpec_DiscreteValueSpecArgs
                {
                    Values = new[]
                    {
                        0,
                    },
                },
                DoubleValueSpec = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfigParameterSpec_DoubleValueSpecArgs
                {
                    MaxValue = 0,
                    MinValue = 0,
                },
                IntegerValueSpec = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfigParameterSpec_IntegerValueSpecArgs
                {
                    MaxValue = "string",
                    MinValue = "string",
                },
                ParentCategoricalValues = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentCategoricalValueSpecArgs
                {
                    Values = new[]
                    {
                        "string",
                    },
                },
                ParentDiscreteValues = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentDiscreteValueSpecArgs
                {
                    Values = new[]
                    {
                        0,
                    },
                },
                ParentIntValues = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentIntValueSpecArgs
                {
                    Values = new[]
                    {
                        "string",
                    },
                },
                ScaleType = GoogleNative.Ml.V1.GoogleCloudMlV1_StudyConfig_ParameterSpecScaleType.ScaleTypeUnspecified,
            },
        },
        Algorithm = GoogleNative.Ml.V1.GoogleCloudMlV1__StudyConfigAlgorithm.AlgorithmUnspecified,
        AutomatedStoppingConfig = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1__AutomatedStoppingConfigArgs
        {
            DecayCurveStoppingConfig = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_AutomatedStoppingConfig_DecayCurveAutomatedStoppingConfigArgs
            {
                UseElapsedTime = false,
            },
            MedianAutomatedStoppingConfig = new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_AutomatedStoppingConfig_MedianAutomatedStoppingConfigArgs
            {
                UseElapsedTime = false,
            },
        },
        Metrics = new[]
        {
            new GoogleNative.Ml.V1.Inputs.GoogleCloudMlV1_StudyConfig_MetricSpecArgs
            {
                Goal = GoogleNative.Ml.V1.GoogleCloudMlV1_StudyConfig_MetricSpecGoal.GoalTypeUnspecified,
                Metric = "string",
            },
        },
    },
    StudyId = "string",
    Location = "string",
    Project = "string",
});
example, err := ml.NewStudy(ctx, "examplestudyResourceResourceFromMlv1", &ml.StudyArgs{
	StudyConfig: &ml.GoogleCloudMlV1__StudyConfigArgs{
		Parameters: ml.GoogleCloudMlV1_StudyConfig_ParameterSpecArray{
			&ml.GoogleCloudMlV1_StudyConfig_ParameterSpecArgs{
				Parameter: pulumi.String("string"),
				Type:      ml.GoogleCloudMlV1_StudyConfig_ParameterSpecTypeParameterTypeUnspecified,
				CategoricalValueSpec: &ml.GoogleCloudMlV1_StudyConfigParameterSpec_CategoricalValueSpecArgs{
					Values: pulumi.StringArray{
						pulumi.String("string"),
					},
				},
				ChildParameterSpecs: ml.GoogleCloudMlV1_StudyConfig_ParameterSpecArray{
					googleCloudMlV1_StudyConfig_ParameterSpec,
				},
				DiscreteValueSpec: &ml.GoogleCloudMlV1_StudyConfigParameterSpec_DiscreteValueSpecArgs{
					Values: pulumi.Float64Array{
						pulumi.Float64(0),
					},
				},
				DoubleValueSpec: &ml.GoogleCloudMlV1_StudyConfigParameterSpec_DoubleValueSpecArgs{
					MaxValue: pulumi.Float64(0),
					MinValue: pulumi.Float64(0),
				},
				IntegerValueSpec: &ml.GoogleCloudMlV1_StudyConfigParameterSpec_IntegerValueSpecArgs{
					MaxValue: pulumi.String("string"),
					MinValue: pulumi.String("string"),
				},
				ParentCategoricalValues: &ml.GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentCategoricalValueSpecArgs{
					Values: pulumi.StringArray{
						pulumi.String("string"),
					},
				},
				ParentDiscreteValues: &ml.GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentDiscreteValueSpecArgs{
					Values: pulumi.Float64Array{
						pulumi.Float64(0),
					},
				},
				ParentIntValues: &ml.GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentIntValueSpecArgs{
					Values: pulumi.StringArray{
						pulumi.String("string"),
					},
				},
				ScaleType: ml.GoogleCloudMlV1_StudyConfig_ParameterSpecScaleTypeScaleTypeUnspecified,
			},
		},
		Algorithm: ml.GoogleCloudMlV1__StudyConfigAlgorithmAlgorithmUnspecified,
		AutomatedStoppingConfig: &ml.GoogleCloudMlV1__AutomatedStoppingConfigArgs{
			DecayCurveStoppingConfig: &ml.GoogleCloudMlV1_AutomatedStoppingConfig_DecayCurveAutomatedStoppingConfigArgs{
				UseElapsedTime: pulumi.Bool(false),
			},
			MedianAutomatedStoppingConfig: &ml.GoogleCloudMlV1_AutomatedStoppingConfig_MedianAutomatedStoppingConfigArgs{
				UseElapsedTime: pulumi.Bool(false),
			},
		},
		Metrics: ml.GoogleCloudMlV1_StudyConfig_MetricSpecArray{
			&ml.GoogleCloudMlV1_StudyConfig_MetricSpecArgs{
				Goal:   ml.GoogleCloudMlV1_StudyConfig_MetricSpecGoalGoalTypeUnspecified,
				Metric: pulumi.String("string"),
			},
		},
	},
	StudyId:  pulumi.String("string"),
	Location: pulumi.String("string"),
	Project:  pulumi.String("string"),
})
var examplestudyResourceResourceFromMlv1 = new Study("examplestudyResourceResourceFromMlv1", StudyArgs.builder()
    .studyConfig(GoogleCloudMlV1__StudyConfigArgs.builder()
        .parameters(GoogleCloudMlV1_StudyConfig_ParameterSpecArgs.builder()
            .parameter("string")
            .type("PARAMETER_TYPE_UNSPECIFIED")
            .categoricalValueSpec(GoogleCloudMlV1_StudyConfigParameterSpec_CategoricalValueSpecArgs.builder()
                .values("string")
                .build())
            .childParameterSpecs(googleCloudMlV1_StudyConfig_ParameterSpec)
            .discreteValueSpec(GoogleCloudMlV1_StudyConfigParameterSpec_DiscreteValueSpecArgs.builder()
                .values(0)
                .build())
            .doubleValueSpec(GoogleCloudMlV1_StudyConfigParameterSpec_DoubleValueSpecArgs.builder()
                .maxValue(0)
                .minValue(0)
                .build())
            .integerValueSpec(GoogleCloudMlV1_StudyConfigParameterSpec_IntegerValueSpecArgs.builder()
                .maxValue("string")
                .minValue("string")
                .build())
            .parentCategoricalValues(GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentCategoricalValueSpecArgs.builder()
                .values("string")
                .build())
            .parentDiscreteValues(GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentDiscreteValueSpecArgs.builder()
                .values(0)
                .build())
            .parentIntValues(GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentIntValueSpecArgs.builder()
                .values("string")
                .build())
            .scaleType("SCALE_TYPE_UNSPECIFIED")
            .build())
        .algorithm("ALGORITHM_UNSPECIFIED")
        .automatedStoppingConfig(GoogleCloudMlV1__AutomatedStoppingConfigArgs.builder()
            .decayCurveStoppingConfig(GoogleCloudMlV1_AutomatedStoppingConfig_DecayCurveAutomatedStoppingConfigArgs.builder()
                .useElapsedTime(false)
                .build())
            .medianAutomatedStoppingConfig(GoogleCloudMlV1_AutomatedStoppingConfig_MedianAutomatedStoppingConfigArgs.builder()
                .useElapsedTime(false)
                .build())
            .build())
        .metrics(GoogleCloudMlV1_StudyConfig_MetricSpecArgs.builder()
            .goal("GOAL_TYPE_UNSPECIFIED")
            .metric("string")
            .build())
        .build())
    .studyId("string")
    .location("string")
    .project("string")
    .build());
examplestudy_resource_resource_from_mlv1 = google_native.ml.v1.Study("examplestudyResourceResourceFromMlv1",
    study_config={
        "parameters": [{
            "parameter": "string",
            "type": google_native.ml.v1.GoogleCloudMlV1_StudyConfig_ParameterSpecType.PARAMETER_TYPE_UNSPECIFIED,
            "categorical_value_spec": {
                "values": ["string"],
            },
            "child_parameter_specs": [google_cloud_ml_v1__study_config__parameter_spec],
            "discrete_value_spec": {
                "values": [0],
            },
            "double_value_spec": {
                "max_value": 0,
                "min_value": 0,
            },
            "integer_value_spec": {
                "max_value": "string",
                "min_value": "string",
            },
            "parent_categorical_values": {
                "values": ["string"],
            },
            "parent_discrete_values": {
                "values": [0],
            },
            "parent_int_values": {
                "values": ["string"],
            },
            "scale_type": google_native.ml.v1.GoogleCloudMlV1_StudyConfig_ParameterSpecScaleType.SCALE_TYPE_UNSPECIFIED,
        }],
        "algorithm": google_native.ml.v1.GoogleCloudMlV1__StudyConfigAlgorithm.ALGORITHM_UNSPECIFIED,
        "automated_stopping_config": {
            "decay_curve_stopping_config": {
                "use_elapsed_time": False,
            },
            "median_automated_stopping_config": {
                "use_elapsed_time": False,
            },
        },
        "metrics": [{
            "goal": google_native.ml.v1.GoogleCloudMlV1_StudyConfig_MetricSpecGoal.GOAL_TYPE_UNSPECIFIED,
            "metric": "string",
        }],
    },
    study_id="string",
    location="string",
    project="string")
const examplestudyResourceResourceFromMlv1 = new google_native.ml.v1.Study("examplestudyResourceResourceFromMlv1", {
    studyConfig: {
        parameters: [{
            parameter: "string",
            type: google_native.ml.v1.GoogleCloudMlV1_StudyConfig_ParameterSpecType.ParameterTypeUnspecified,
            categoricalValueSpec: {
                values: ["string"],
            },
            childParameterSpecs: [googleCloudMlV1_StudyConfig_ParameterSpec],
            discreteValueSpec: {
                values: [0],
            },
            doubleValueSpec: {
                maxValue: 0,
                minValue: 0,
            },
            integerValueSpec: {
                maxValue: "string",
                minValue: "string",
            },
            parentCategoricalValues: {
                values: ["string"],
            },
            parentDiscreteValues: {
                values: [0],
            },
            parentIntValues: {
                values: ["string"],
            },
            scaleType: google_native.ml.v1.GoogleCloudMlV1_StudyConfig_ParameterSpecScaleType.ScaleTypeUnspecified,
        }],
        algorithm: google_native.ml.v1.GoogleCloudMlV1__StudyConfigAlgorithm.AlgorithmUnspecified,
        automatedStoppingConfig: {
            decayCurveStoppingConfig: {
                useElapsedTime: false,
            },
            medianAutomatedStoppingConfig: {
                useElapsedTime: false,
            },
        },
        metrics: [{
            goal: google_native.ml.v1.GoogleCloudMlV1_StudyConfig_MetricSpecGoal.GoalTypeUnspecified,
            metric: "string",
        }],
    },
    studyId: "string",
    location: "string",
    project: "string",
});
type: google-native:ml/v1:Study
properties:
    location: string
    project: string
    studyConfig:
        algorithm: ALGORITHM_UNSPECIFIED
        automatedStoppingConfig:
            decayCurveStoppingConfig:
                useElapsedTime: false
            medianAutomatedStoppingConfig:
                useElapsedTime: false
        metrics:
            - goal: GOAL_TYPE_UNSPECIFIED
              metric: string
        parameters:
            - categoricalValueSpec:
                values:
                    - string
              childParameterSpecs:
                - ${googleCloudMlV1_StudyConfig_ParameterSpec}
              discreteValueSpec:
                values:
                    - 0
              doubleValueSpec:
                maxValue: 0
                minValue: 0
              integerValueSpec:
                maxValue: string
                minValue: string
              parameter: string
              parentCategoricalValues:
                values:
                    - string
              parentDiscreteValues:
                values:
                    - 0
              parentIntValues:
                values:
                    - string
              scaleType: SCALE_TYPE_UNSPECIFIED
              type: PARAMETER_TYPE_UNSPECIFIED
    studyId: string
Study Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The Study resource accepts the following input properties:
- StudyConfig Pulumi.Google Native. Ml. V1. Inputs. Google Cloud Ml V1__Study Config 
- Configuration of the study.
- StudyId string
- Required. The ID to use for the study, which will become the final component of the study's resource name.
- Location string
- Project string
- StudyConfig GoogleCloud Ml V1__Study Config Args 
- Configuration of the study.
- StudyId string
- Required. The ID to use for the study, which will become the final component of the study's resource name.
- Location string
- Project string
- studyConfig GoogleCloud Ml V1__Study Config 
- Configuration of the study.
- studyId String
- Required. The ID to use for the study, which will become the final component of the study's resource name.
- location String
- project String
- studyConfig GoogleCloud Ml V1__Study Config 
- Configuration of the study.
- studyId string
- Required. The ID to use for the study, which will become the final component of the study's resource name.
- location string
- project string
- study_config GoogleCloud Ml V1Study Config Args 
- Configuration of the study.
- study_id str
- Required. The ID to use for the study, which will become the final component of the study's resource name.
- location str
- project str
- studyConfig Property Map
- Configuration of the study.
- studyId String
- Required. The ID to use for the study, which will become the final component of the study's resource name.
- location String
- project String
Outputs
All input properties are implicitly available as output properties. Additionally, the Study resource produces the following output properties:
- CreateTime string
- Time at which the study was created.
- Id string
- The provider-assigned unique ID for this managed resource.
- InactiveReason string
- A human readable reason why the Study is inactive. This should be empty if a study is ACTIVE or COMPLETED.
- Name string
- The name of a study.
- State string
- The detailed state of a study.
- CreateTime string
- Time at which the study was created.
- Id string
- The provider-assigned unique ID for this managed resource.
- InactiveReason string
- A human readable reason why the Study is inactive. This should be empty if a study is ACTIVE or COMPLETED.
- Name string
- The name of a study.
- State string
- The detailed state of a study.
- createTime String
- Time at which the study was created.
- id String
- The provider-assigned unique ID for this managed resource.
- inactiveReason String
- A human readable reason why the Study is inactive. This should be empty if a study is ACTIVE or COMPLETED.
- name String
- The name of a study.
- state String
- The detailed state of a study.
- createTime string
- Time at which the study was created.
- id string
- The provider-assigned unique ID for this managed resource.
- inactiveReason string
- A human readable reason why the Study is inactive. This should be empty if a study is ACTIVE or COMPLETED.
- name string
- The name of a study.
- state string
- The detailed state of a study.
- create_time str
- Time at which the study was created.
- id str
- The provider-assigned unique ID for this managed resource.
- inactive_reason str
- A human readable reason why the Study is inactive. This should be empty if a study is ACTIVE or COMPLETED.
- name str
- The name of a study.
- state str
- The detailed state of a study.
- createTime String
- Time at which the study was created.
- id String
- The provider-assigned unique ID for this managed resource.
- inactiveReason String
- A human readable reason why the Study is inactive. This should be empty if a study is ACTIVE or COMPLETED.
- name String
- The name of a study.
- state String
- The detailed state of a study.
Supporting Types
GoogleCloudMlV1_AutomatedStoppingConfig_DecayCurveAutomatedStoppingConfig, GoogleCloudMlV1_AutomatedStoppingConfig_DecayCurveAutomatedStoppingConfigArgs                    
- UseElapsed boolTime 
- If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- UseElapsed boolTime 
- If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- useElapsed BooleanTime 
- If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- useElapsed booleanTime 
- If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- use_elapsed_ booltime 
- If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- useElapsed BooleanTime 
- If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
GoogleCloudMlV1_AutomatedStoppingConfig_DecayCurveAutomatedStoppingConfigResponse, GoogleCloudMlV1_AutomatedStoppingConfig_DecayCurveAutomatedStoppingConfigResponseArgs                      
- UseElapsed boolTime 
- If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- UseElapsed boolTime 
- If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- useElapsed BooleanTime 
- If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- useElapsed booleanTime 
- If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- use_elapsed_ booltime 
- If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
- useElapsed BooleanTime 
- If true, measurement.elapsed_time is used as the x-axis of each Trials Decay Curve. Otherwise, Measurement.steps will be used as the x-axis.
GoogleCloudMlV1_AutomatedStoppingConfig_MedianAutomatedStoppingConfig, GoogleCloudMlV1_AutomatedStoppingConfig_MedianAutomatedStoppingConfigArgs                  
- UseElapsed boolTime 
- If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- UseElapsed boolTime 
- If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- useElapsed BooleanTime 
- If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- useElapsed booleanTime 
- If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- use_elapsed_ booltime 
- If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- useElapsed BooleanTime 
- If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
GoogleCloudMlV1_AutomatedStoppingConfig_MedianAutomatedStoppingConfigResponse, GoogleCloudMlV1_AutomatedStoppingConfig_MedianAutomatedStoppingConfigResponseArgs                    
- UseElapsed boolTime 
- If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- UseElapsed boolTime 
- If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- useElapsed BooleanTime 
- If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- useElapsed booleanTime 
- If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- use_elapsed_ booltime 
- If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
- useElapsed BooleanTime 
- If true, the median automated stopping rule applies to measurement.use_elapsed_time, which means the elapsed_time field of the current trial's latest measurement is used to compute the median objective value for each completed trial.
GoogleCloudMlV1_StudyConfigParameterSpec_CategoricalValueSpec, GoogleCloudMlV1_StudyConfigParameterSpec_CategoricalValueSpecArgs                  
- Values List<string>
- Must be specified if type is CATEGORICAL. The list of possible categories.
- Values []string
- Must be specified if type is CATEGORICAL. The list of possible categories.
- values List<String>
- Must be specified if type is CATEGORICAL. The list of possible categories.
- values string[]
- Must be specified if type is CATEGORICAL. The list of possible categories.
- values Sequence[str]
- Must be specified if type is CATEGORICAL. The list of possible categories.
- values List<String>
- Must be specified if type is CATEGORICAL. The list of possible categories.
GoogleCloudMlV1_StudyConfigParameterSpec_CategoricalValueSpecResponse, GoogleCloudMlV1_StudyConfigParameterSpec_CategoricalValueSpecResponseArgs                    
- Values List<string>
- Must be specified if type is CATEGORICAL. The list of possible categories.
- Values []string
- Must be specified if type is CATEGORICAL. The list of possible categories.
- values List<String>
- Must be specified if type is CATEGORICAL. The list of possible categories.
- values string[]
- Must be specified if type is CATEGORICAL. The list of possible categories.
- values Sequence[str]
- Must be specified if type is CATEGORICAL. The list of possible categories.
- values List<String>
- Must be specified if type is CATEGORICAL. The list of possible categories.
GoogleCloudMlV1_StudyConfigParameterSpec_DiscreteValueSpec, GoogleCloudMlV1_StudyConfigParameterSpec_DiscreteValueSpecArgs                  
- Values List<double>
- Must be specified if type is DISCRETE. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- Values []float64
- Must be specified if type is DISCRETE. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- values List<Double>
- Must be specified if type is DISCRETE. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- values number[]
- Must be specified if type is DISCRETE. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- values Sequence[float]
- Must be specified if type is DISCRETE. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- values List<Number>
- Must be specified if type is DISCRETE. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
GoogleCloudMlV1_StudyConfigParameterSpec_DiscreteValueSpecResponse, GoogleCloudMlV1_StudyConfigParameterSpec_DiscreteValueSpecResponseArgs                    
- Values List<double>
- Must be specified if type is DISCRETE. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- Values []float64
- Must be specified if type is DISCRETE. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- values List<Double>
- Must be specified if type is DISCRETE. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- values number[]
- Must be specified if type is DISCRETE. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- values Sequence[float]
- Must be specified if type is DISCRETE. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
- values List<Number>
- Must be specified if type is DISCRETE. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
GoogleCloudMlV1_StudyConfigParameterSpec_DoubleValueSpec, GoogleCloudMlV1_StudyConfigParameterSpec_DoubleValueSpecArgs                  
GoogleCloudMlV1_StudyConfigParameterSpec_DoubleValueSpecResponse, GoogleCloudMlV1_StudyConfigParameterSpec_DoubleValueSpecResponseArgs                    
GoogleCloudMlV1_StudyConfigParameterSpec_IntegerValueSpec, GoogleCloudMlV1_StudyConfigParameterSpec_IntegerValueSpecArgs                  
GoogleCloudMlV1_StudyConfigParameterSpec_IntegerValueSpecResponse, GoogleCloudMlV1_StudyConfigParameterSpec_IntegerValueSpecResponseArgs                    
GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentCategoricalValueSpec, GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentCategoricalValueSpecArgs                      
- Values List<string>
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in categorical_value_specof parent parameter.
- Values []string
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in categorical_value_specof parent parameter.
- values List<String>
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in categorical_value_specof parent parameter.
- values string[]
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in categorical_value_specof parent parameter.
- values Sequence[str]
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in categorical_value_specof parent parameter.
- values List<String>
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in categorical_value_specof parent parameter.
GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentCategoricalValueSpecResponse, GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentCategoricalValueSpecResponseArgs                        
- Values List<string>
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in categorical_value_specof parent parameter.
- Values []string
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in categorical_value_specof parent parameter.
- values List<String>
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in categorical_value_specof parent parameter.
- values string[]
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in categorical_value_specof parent parameter.
- values Sequence[str]
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in categorical_value_specof parent parameter.
- values List<String>
- Matches values of the parent parameter with type 'CATEGORICAL'. All values must exist in categorical_value_specof parent parameter.
GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentDiscreteValueSpec, GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentDiscreteValueSpecArgs                      
- Values List<double>
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in discrete_value_specof parent parameter.
- Values []float64
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in discrete_value_specof parent parameter.
- values List<Double>
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in discrete_value_specof parent parameter.
- values number[]
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in discrete_value_specof parent parameter.
- values Sequence[float]
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in discrete_value_specof parent parameter.
- values List<Number>
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in discrete_value_specof parent parameter.
GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentDiscreteValueSpecResponse, GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentDiscreteValueSpecResponseArgs                        
- Values List<double>
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in discrete_value_specof parent parameter.
- Values []float64
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in discrete_value_specof parent parameter.
- values List<Double>
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in discrete_value_specof parent parameter.
- values number[]
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in discrete_value_specof parent parameter.
- values Sequence[float]
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in discrete_value_specof parent parameter.
- values List<Number>
- Matches values of the parent parameter with type 'DISCRETE'. All values must exist in discrete_value_specof parent parameter.
GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentIntValueSpec, GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentIntValueSpecArgs                      
- Values List<string>
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in integer_value_specof parent parameter.
- Values []string
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in integer_value_specof parent parameter.
- values List<String>
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in integer_value_specof parent parameter.
- values string[]
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in integer_value_specof parent parameter.
- values Sequence[str]
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in integer_value_specof parent parameter.
- values List<String>
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in integer_value_specof parent parameter.
GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentIntValueSpecResponse, GoogleCloudMlV1_StudyConfigParameterSpec_MatchingParentIntValueSpecResponseArgs                        
- Values List<string>
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in integer_value_specof parent parameter.
- Values []string
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in integer_value_specof parent parameter.
- values List<String>
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in integer_value_specof parent parameter.
- values string[]
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in integer_value_specof parent parameter.
- values Sequence[str]
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in integer_value_specof parent parameter.
- values List<String>
- Matches values of the parent parameter with type 'INTEGER'. All values must lie in integer_value_specof parent parameter.
GoogleCloudMlV1_StudyConfig_MetricSpec, GoogleCloudMlV1_StudyConfig_MetricSpecArgs            
- Goal
Pulumi.Google Native. Ml. V1. Google Cloud Ml V1_Study Config_Metric Spec Goal 
- The optimization goal of the metric.
- Metric string
- The name of the metric.
- Goal
GoogleCloud Ml V1_Study Config_Metric Spec Goal 
- The optimization goal of the metric.
- Metric string
- The name of the metric.
- goal
GoogleCloud Ml V1_Study Config_Metric Spec Goal 
- The optimization goal of the metric.
- metric String
- The name of the metric.
- goal
GoogleCloud Ml V1_Study Config_Metric Spec Goal 
- The optimization goal of the metric.
- metric string
- The name of the metric.
- goal
GoogleCloud Ml V1Study Config_Metric Spec Goal 
- The optimization goal of the metric.
- metric str
- The name of the metric.
- goal "GOAL_TYPE_UNSPECIFIED" | "MAXIMIZE" | "MINIMIZE"
- The optimization goal of the metric.
- metric String
- The name of the metric.
GoogleCloudMlV1_StudyConfig_MetricSpecGoal, GoogleCloudMlV1_StudyConfig_MetricSpecGoalArgs              
- GoalType Unspecified 
- GOAL_TYPE_UNSPECIFIEDGoal Type will default to maximize.
- Maximize
- MAXIMIZEMaximize the goal metric.
- Minimize
- MINIMIZEMinimize the goal metric.
- GoogleCloud Ml V1_Study Config_Metric Spec Goal Goal Type Unspecified 
- GOAL_TYPE_UNSPECIFIEDGoal Type will default to maximize.
- GoogleCloud Ml V1_Study Config_Metric Spec Goal Maximize 
- MAXIMIZEMaximize the goal metric.
- GoogleCloud Ml V1_Study Config_Metric Spec Goal Minimize 
- MINIMIZEMinimize the goal metric.
- GoalType Unspecified 
- GOAL_TYPE_UNSPECIFIEDGoal Type will default to maximize.
- Maximize
- MAXIMIZEMaximize the goal metric.
- Minimize
- MINIMIZEMinimize the goal metric.
- GoalType Unspecified 
- GOAL_TYPE_UNSPECIFIEDGoal Type will default to maximize.
- Maximize
- MAXIMIZEMaximize the goal metric.
- Minimize
- MINIMIZEMinimize the goal metric.
- GOAL_TYPE_UNSPECIFIED
- GOAL_TYPE_UNSPECIFIEDGoal Type will default to maximize.
- MAXIMIZE
- MAXIMIZEMaximize the goal metric.
- MINIMIZE
- MINIMIZEMinimize the goal metric.
- "GOAL_TYPE_UNSPECIFIED"
- GOAL_TYPE_UNSPECIFIEDGoal Type will default to maximize.
- "MAXIMIZE"
- MAXIMIZEMaximize the goal metric.
- "MINIMIZE"
- MINIMIZEMinimize the goal metric.
GoogleCloudMlV1_StudyConfig_MetricSpecResponse, GoogleCloudMlV1_StudyConfig_MetricSpecResponseArgs              
GoogleCloudMlV1_StudyConfig_ParameterSpec, GoogleCloudMlV1_StudyConfig_ParameterSpecArgs            
- Parameter string
- The parameter name must be unique amongst all ParameterSpecs.
- Type
Pulumi.Google Native. Ml. V1. Google Cloud Ml V1_Study Config_Parameter Spec Type 
- The type of the parameter.
- CategoricalValue Pulumi.Spec Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Categorical Value Spec 
- The value spec for a 'CATEGORICAL' parameter.
- ChildParameter List<Pulumi.Specs Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config_Parameter Spec> 
- A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- DiscreteValue Pulumi.Spec Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Discrete Value Spec 
- The value spec for a 'DISCRETE' parameter.
- DoubleValue Pulumi.Spec Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Double Value Spec 
- The value spec for a 'DOUBLE' parameter.
- IntegerValue Pulumi.Spec Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Integer Value Spec 
- The value spec for an 'INTEGER' parameter.
- ParentCategorical Pulumi.Values Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Matching Parent Categorical Value Spec 
- ParentDiscrete Pulumi.Values Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Matching Parent Discrete Value Spec 
- ParentInt Pulumi.Values Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Matching Parent Int Value Spec 
- ScaleType Pulumi.Google Native. Ml. V1. Google Cloud Ml V1_Study Config_Parameter Spec Scale Type 
- How the parameter should be scaled. Leave unset for categorical parameters.
- Parameter string
- The parameter name must be unique amongst all ParameterSpecs.
- Type
GoogleCloud Ml V1_Study Config_Parameter Spec Type 
- The type of the parameter.
- CategoricalValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Categorical Value Spec 
- The value spec for a 'CATEGORICAL' parameter.
- ChildParameter []GoogleSpecs Cloud Ml V1_Study Config_Parameter Spec 
- A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- DiscreteValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Discrete Value Spec 
- The value spec for a 'DISCRETE' parameter.
- DoubleValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Double Value Spec 
- The value spec for a 'DOUBLE' parameter.
- IntegerValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Integer Value Spec 
- The value spec for an 'INTEGER' parameter.
- ParentCategorical GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Categorical Value Spec 
- ParentDiscrete GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Discrete Value Spec 
- ParentInt GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Int Value Spec 
- ScaleType GoogleCloud Ml V1_Study Config_Parameter Spec Scale Type 
- How the parameter should be scaled. Leave unset for categorical parameters.
- parameter String
- The parameter name must be unique amongst all ParameterSpecs.
- type
GoogleCloud Ml V1_Study Config_Parameter Spec Type 
- The type of the parameter.
- categoricalValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Categorical Value Spec 
- The value spec for a 'CATEGORICAL' parameter.
- childParameter List<GoogleSpecs Cloud Ml V1_Study Config_Parameter Spec> 
- A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- discreteValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Discrete Value Spec 
- The value spec for a 'DISCRETE' parameter.
- doubleValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Double Value Spec 
- The value spec for a 'DOUBLE' parameter.
- integerValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Integer Value Spec 
- The value spec for an 'INTEGER' parameter.
- parentCategorical GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Categorical Value Spec 
- parentDiscrete GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Discrete Value Spec 
- parentInt GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Int Value Spec 
- scaleType GoogleCloud Ml V1_Study Config_Parameter Spec Scale Type 
- How the parameter should be scaled. Leave unset for categorical parameters.
- parameter string
- The parameter name must be unique amongst all ParameterSpecs.
- type
GoogleCloud Ml V1_Study Config_Parameter Spec Type 
- The type of the parameter.
- categoricalValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Categorical Value Spec 
- The value spec for a 'CATEGORICAL' parameter.
- childParameter GoogleSpecs Cloud Ml V1_Study Config_Parameter Spec[] 
- A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- discreteValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Discrete Value Spec 
- The value spec for a 'DISCRETE' parameter.
- doubleValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Double Value Spec 
- The value spec for a 'DOUBLE' parameter.
- integerValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Integer Value Spec 
- The value spec for an 'INTEGER' parameter.
- parentCategorical GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Categorical Value Spec 
- parentDiscrete GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Discrete Value Spec 
- parentInt GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Int Value Spec 
- scaleType GoogleCloud Ml V1_Study Config_Parameter Spec Scale Type 
- How the parameter should be scaled. Leave unset for categorical parameters.
- parameter str
- The parameter name must be unique amongst all ParameterSpecs.
- type
GoogleCloud Ml V1Study Config_Parameter Spec Type 
- The type of the parameter.
- categorical_value_ Googlespec Cloud Ml V1Study Config Parameter Spec_Categorical Value Spec 
- The value spec for a 'CATEGORICAL' parameter.
- child_parameter_ Sequence[Googlespecs Cloud Ml V1Study Config_Parameter Spec] 
- A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- discrete_value_ Googlespec Cloud Ml V1Study Config Parameter Spec_Discrete Value Spec 
- The value spec for a 'DISCRETE' parameter.
- double_value_ Googlespec Cloud Ml V1Study Config Parameter Spec_Double Value Spec 
- The value spec for a 'DOUBLE' parameter.
- integer_value_ Googlespec Cloud Ml V1Study Config Parameter Spec_Integer Value Spec 
- The value spec for an 'INTEGER' parameter.
- parent_categorical_ Googlevalues Cloud Ml V1Study Config Parameter Spec_Matching Parent Categorical Value Spec 
- parent_discrete_ Googlevalues Cloud Ml V1Study Config Parameter Spec_Matching Parent Discrete Value Spec 
- parent_int_ Googlevalues Cloud Ml V1Study Config Parameter Spec_Matching Parent Int Value Spec 
- scale_type GoogleCloud Ml V1Study Config_Parameter Spec Scale Type 
- How the parameter should be scaled. Leave unset for categorical parameters.
- parameter String
- The parameter name must be unique amongst all ParameterSpecs.
- type "PARAMETER_TYPE_UNSPECIFIED" | "DOUBLE" | "INTEGER" | "CATEGORICAL" | "DISCRETE"
- The type of the parameter.
- categoricalValue Property MapSpec 
- The value spec for a 'CATEGORICAL' parameter.
- childParameter List<Property Map>Specs 
- A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- discreteValue Property MapSpec 
- The value spec for a 'DISCRETE' parameter.
- doubleValue Property MapSpec 
- The value spec for a 'DOUBLE' parameter.
- integerValue Property MapSpec 
- The value spec for an 'INTEGER' parameter.
- parentCategorical Property MapValues 
- parentDiscrete Property MapValues 
- parentInt Property MapValues 
- scaleType "SCALE_TYPE_UNSPECIFIED" | "UNIT_LINEAR_SCALE" | "UNIT_LOG_SCALE" | "UNIT_REVERSE_LOG_SCALE"
- How the parameter should be scaled. Leave unset for categorical parameters.
GoogleCloudMlV1_StudyConfig_ParameterSpecResponse, GoogleCloudMlV1_StudyConfig_ParameterSpecResponseArgs              
- CategoricalValue Pulumi.Spec Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Categorical Value Spec Response 
- The value spec for a 'CATEGORICAL' parameter.
- ChildParameter List<Pulumi.Specs Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config_Parameter Spec Response> 
- A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- DiscreteValue Pulumi.Spec Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Discrete Value Spec Response 
- The value spec for a 'DISCRETE' parameter.
- DoubleValue Pulumi.Spec Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Double Value Spec Response 
- The value spec for a 'DOUBLE' parameter.
- IntegerValue Pulumi.Spec Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Integer Value Spec Response 
- The value spec for an 'INTEGER' parameter.
- Parameter string
- The parameter name must be unique amongst all ParameterSpecs.
- ParentCategorical Pulumi.Values Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Matching Parent Categorical Value Spec Response 
- ParentDiscrete Pulumi.Values Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Matching Parent Discrete Value Spec Response 
- ParentInt Pulumi.Values Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config Parameter Spec_Matching Parent Int Value Spec Response 
- ScaleType string
- How the parameter should be scaled. Leave unset for categorical parameters.
- Type string
- The type of the parameter.
- CategoricalValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Categorical Value Spec Response 
- The value spec for a 'CATEGORICAL' parameter.
- ChildParameter []GoogleSpecs Cloud Ml V1_Study Config_Parameter Spec Response 
- A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- DiscreteValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Discrete Value Spec Response 
- The value spec for a 'DISCRETE' parameter.
- DoubleValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Double Value Spec Response 
- The value spec for a 'DOUBLE' parameter.
- IntegerValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Integer Value Spec Response 
- The value spec for an 'INTEGER' parameter.
- Parameter string
- The parameter name must be unique amongst all ParameterSpecs.
- ParentCategorical GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Categorical Value Spec Response 
- ParentDiscrete GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Discrete Value Spec Response 
- ParentInt GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Int Value Spec Response 
- ScaleType string
- How the parameter should be scaled. Leave unset for categorical parameters.
- Type string
- The type of the parameter.
- categoricalValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Categorical Value Spec Response 
- The value spec for a 'CATEGORICAL' parameter.
- childParameter List<GoogleSpecs Cloud Ml V1_Study Config_Parameter Spec Response> 
- A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- discreteValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Discrete Value Spec Response 
- The value spec for a 'DISCRETE' parameter.
- doubleValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Double Value Spec Response 
- The value spec for a 'DOUBLE' parameter.
- integerValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Integer Value Spec Response 
- The value spec for an 'INTEGER' parameter.
- parameter String
- The parameter name must be unique amongst all ParameterSpecs.
- parentCategorical GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Categorical Value Spec Response 
- parentDiscrete GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Discrete Value Spec Response 
- parentInt GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Int Value Spec Response 
- scaleType String
- How the parameter should be scaled. Leave unset for categorical parameters.
- type String
- The type of the parameter.
- categoricalValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Categorical Value Spec Response 
- The value spec for a 'CATEGORICAL' parameter.
- childParameter GoogleSpecs Cloud Ml V1_Study Config_Parameter Spec Response[] 
- A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- discreteValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Discrete Value Spec Response 
- The value spec for a 'DISCRETE' parameter.
- doubleValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Double Value Spec Response 
- The value spec for a 'DOUBLE' parameter.
- integerValue GoogleSpec Cloud Ml V1_Study Config Parameter Spec_Integer Value Spec Response 
- The value spec for an 'INTEGER' parameter.
- parameter string
- The parameter name must be unique amongst all ParameterSpecs.
- parentCategorical GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Categorical Value Spec Response 
- parentDiscrete GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Discrete Value Spec Response 
- parentInt GoogleValues Cloud Ml V1_Study Config Parameter Spec_Matching Parent Int Value Spec Response 
- scaleType string
- How the parameter should be scaled. Leave unset for categorical parameters.
- type string
- The type of the parameter.
- categorical_value_ Googlespec Cloud Ml V1Study Config Parameter Spec_Categorical Value Spec Response 
- The value spec for a 'CATEGORICAL' parameter.
- child_parameter_ Sequence[Googlespecs Cloud Ml V1Study Config_Parameter Spec Response] 
- A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- discrete_value_ Googlespec Cloud Ml V1Study Config Parameter Spec_Discrete Value Spec Response 
- The value spec for a 'DISCRETE' parameter.
- double_value_ Googlespec Cloud Ml V1Study Config Parameter Spec_Double Value Spec Response 
- The value spec for a 'DOUBLE' parameter.
- integer_value_ Googlespec Cloud Ml V1Study Config Parameter Spec_Integer Value Spec Response 
- The value spec for an 'INTEGER' parameter.
- parameter str
- The parameter name must be unique amongst all ParameterSpecs.
- parent_categorical_ Googlevalues Cloud Ml V1Study Config Parameter Spec_Matching Parent Categorical Value Spec Response 
- parent_discrete_ Googlevalues Cloud Ml V1Study Config Parameter Spec_Matching Parent Discrete Value Spec Response 
- parent_int_ Googlevalues Cloud Ml V1Study Config Parameter Spec_Matching Parent Int Value Spec Response 
- scale_type str
- How the parameter should be scaled. Leave unset for categorical parameters.
- type str
- The type of the parameter.
- categoricalValue Property MapSpec 
- The value spec for a 'CATEGORICAL' parameter.
- childParameter List<Property Map>Specs 
- A child node is active if the parameter's value matches the child node's matching_parent_values. If two items in child_parameter_specs have the same name, they must have disjoint matching_parent_values.
- discreteValue Property MapSpec 
- The value spec for a 'DISCRETE' parameter.
- doubleValue Property MapSpec 
- The value spec for a 'DOUBLE' parameter.
- integerValue Property MapSpec 
- The value spec for an 'INTEGER' parameter.
- parameter String
- The parameter name must be unique amongst all ParameterSpecs.
- parentCategorical Property MapValues 
- parentDiscrete Property MapValues 
- parentInt Property MapValues 
- scaleType String
- How the parameter should be scaled. Leave unset for categorical parameters.
- type String
- The type of the parameter.
GoogleCloudMlV1_StudyConfig_ParameterSpecScaleType, GoogleCloudMlV1_StudyConfig_ParameterSpecScaleTypeArgs                
- ScaleType Unspecified 
- SCALE_TYPE_UNSPECIFIEDBy default, no scaling is applied.
- UnitLinear Scale 
- UNIT_LINEAR_SCALEScales the feasible space to (0, 1) linearly.
- UnitLog Scale 
- UNIT_LOG_SCALEScales the feasible space logarithmically to (0, 1). The entire feasible space must be strictly positive.
- UnitReverse Log Scale 
- UNIT_REVERSE_LOG_SCALEScales the feasible space "reverse" logarithmically to (0, 1). The result is that values close to the top of the feasible space are spread out more than points near the bottom. The entire feasible space must be strictly positive.
- GoogleCloud Ml V1_Study Config_Parameter Spec Scale Type Scale Type Unspecified 
- SCALE_TYPE_UNSPECIFIEDBy default, no scaling is applied.
- GoogleCloud Ml V1_Study Config_Parameter Spec Scale Type Unit Linear Scale 
- UNIT_LINEAR_SCALEScales the feasible space to (0, 1) linearly.
- GoogleCloud Ml V1_Study Config_Parameter Spec Scale Type Unit Log Scale 
- UNIT_LOG_SCALEScales the feasible space logarithmically to (0, 1). The entire feasible space must be strictly positive.
- GoogleCloud Ml V1_Study Config_Parameter Spec Scale Type Unit Reverse Log Scale 
- UNIT_REVERSE_LOG_SCALEScales the feasible space "reverse" logarithmically to (0, 1). The result is that values close to the top of the feasible space are spread out more than points near the bottom. The entire feasible space must be strictly positive.
- ScaleType Unspecified 
- SCALE_TYPE_UNSPECIFIEDBy default, no scaling is applied.
- UnitLinear Scale 
- UNIT_LINEAR_SCALEScales the feasible space to (0, 1) linearly.
- UnitLog Scale 
- UNIT_LOG_SCALEScales the feasible space logarithmically to (0, 1). The entire feasible space must be strictly positive.
- UnitReverse Log Scale 
- UNIT_REVERSE_LOG_SCALEScales the feasible space "reverse" logarithmically to (0, 1). The result is that values close to the top of the feasible space are spread out more than points near the bottom. The entire feasible space must be strictly positive.
- ScaleType Unspecified 
- SCALE_TYPE_UNSPECIFIEDBy default, no scaling is applied.
- UnitLinear Scale 
- UNIT_LINEAR_SCALEScales the feasible space to (0, 1) linearly.
- UnitLog Scale 
- UNIT_LOG_SCALEScales the feasible space logarithmically to (0, 1). The entire feasible space must be strictly positive.
- UnitReverse Log Scale 
- UNIT_REVERSE_LOG_SCALEScales the feasible space "reverse" logarithmically to (0, 1). The result is that values close to the top of the feasible space are spread out more than points near the bottom. The entire feasible space must be strictly positive.
- SCALE_TYPE_UNSPECIFIED
- SCALE_TYPE_UNSPECIFIEDBy default, no scaling is applied.
- UNIT_LINEAR_SCALE
- UNIT_LINEAR_SCALEScales the feasible space to (0, 1) linearly.
- UNIT_LOG_SCALE
- UNIT_LOG_SCALEScales the feasible space logarithmically to (0, 1). The entire feasible space must be strictly positive.
- UNIT_REVERSE_LOG_SCALE
- UNIT_REVERSE_LOG_SCALEScales the feasible space "reverse" logarithmically to (0, 1). The result is that values close to the top of the feasible space are spread out more than points near the bottom. The entire feasible space must be strictly positive.
- "SCALE_TYPE_UNSPECIFIED"
- SCALE_TYPE_UNSPECIFIEDBy default, no scaling is applied.
- "UNIT_LINEAR_SCALE"
- UNIT_LINEAR_SCALEScales the feasible space to (0, 1) linearly.
- "UNIT_LOG_SCALE"
- UNIT_LOG_SCALEScales the feasible space logarithmically to (0, 1). The entire feasible space must be strictly positive.
- "UNIT_REVERSE_LOG_SCALE"
- UNIT_REVERSE_LOG_SCALEScales the feasible space "reverse" logarithmically to (0, 1). The result is that values close to the top of the feasible space are spread out more than points near the bottom. The entire feasible space must be strictly positive.
GoogleCloudMlV1_StudyConfig_ParameterSpecType, GoogleCloudMlV1_StudyConfig_ParameterSpecTypeArgs              
- ParameterType Unspecified 
- PARAMETER_TYPE_UNSPECIFIEDYou must specify a valid type. Using this unspecified type will result in an error.
- Double
- DOUBLEType for real-valued parameters.
- Integer
- INTEGERType for integral parameters.
- Categorical
- CATEGORICALThe parameter is categorical, with a value chosen from the categories field.
- Discrete
- DISCRETEThe parameter is real valued, with a fixed set of feasible points. If type==DISCRETE, feasible_points must be provided, and {min_value,max_value} will be ignored.
- GoogleCloud Ml V1_Study Config_Parameter Spec Type Parameter Type Unspecified 
- PARAMETER_TYPE_UNSPECIFIEDYou must specify a valid type. Using this unspecified type will result in an error.
- GoogleCloud Ml V1_Study Config_Parameter Spec Type Double 
- DOUBLEType for real-valued parameters.
- GoogleCloud Ml V1_Study Config_Parameter Spec Type Integer 
- INTEGERType for integral parameters.
- GoogleCloud Ml V1_Study Config_Parameter Spec Type Categorical 
- CATEGORICALThe parameter is categorical, with a value chosen from the categories field.
- GoogleCloud Ml V1_Study Config_Parameter Spec Type Discrete 
- DISCRETEThe parameter is real valued, with a fixed set of feasible points. If type==DISCRETE, feasible_points must be provided, and {min_value,max_value} will be ignored.
- ParameterType Unspecified 
- PARAMETER_TYPE_UNSPECIFIEDYou must specify a valid type. Using this unspecified type will result in an error.
- Double
- DOUBLEType for real-valued parameters.
- Integer
- INTEGERType for integral parameters.
- Categorical
- CATEGORICALThe parameter is categorical, with a value chosen from the categories field.
- Discrete
- DISCRETEThe parameter is real valued, with a fixed set of feasible points. If type==DISCRETE, feasible_points must be provided, and {min_value,max_value} will be ignored.
- ParameterType Unspecified 
- PARAMETER_TYPE_UNSPECIFIEDYou must specify a valid type. Using this unspecified type will result in an error.
- Double
- DOUBLEType for real-valued parameters.
- Integer
- INTEGERType for integral parameters.
- Categorical
- CATEGORICALThe parameter is categorical, with a value chosen from the categories field.
- Discrete
- DISCRETEThe parameter is real valued, with a fixed set of feasible points. If type==DISCRETE, feasible_points must be provided, and {min_value,max_value} will be ignored.
- PARAMETER_TYPE_UNSPECIFIED
- PARAMETER_TYPE_UNSPECIFIEDYou must specify a valid type. Using this unspecified type will result in an error.
- DOUBLE
- DOUBLEType for real-valued parameters.
- INTEGER
- INTEGERType for integral parameters.
- CATEGORICAL
- CATEGORICALThe parameter is categorical, with a value chosen from the categories field.
- DISCRETE
- DISCRETEThe parameter is real valued, with a fixed set of feasible points. If type==DISCRETE, feasible_points must be provided, and {min_value,max_value} will be ignored.
- "PARAMETER_TYPE_UNSPECIFIED"
- PARAMETER_TYPE_UNSPECIFIEDYou must specify a valid type. Using this unspecified type will result in an error.
- "DOUBLE"
- DOUBLEType for real-valued parameters.
- "INTEGER"
- INTEGERType for integral parameters.
- "CATEGORICAL"
- CATEGORICALThe parameter is categorical, with a value chosen from the categories field.
- "DISCRETE"
- DISCRETEThe parameter is real valued, with a fixed set of feasible points. If type==DISCRETE, feasible_points must be provided, and {min_value,max_value} will be ignored.
GoogleCloudMlV1__AutomatedStoppingConfig, GoogleCloudMlV1__AutomatedStoppingConfigArgs            
GoogleCloudMlV1__AutomatedStoppingConfigResponse, GoogleCloudMlV1__AutomatedStoppingConfigResponseArgs              
GoogleCloudMlV1__StudyConfig, GoogleCloudMlV1__StudyConfigArgs          
- Parameters
List<Pulumi.Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config_Parameter Spec> 
- The set of parameters to tune.
- Algorithm
Pulumi.Google Native. Ml. V1. Google Cloud Ml V1__Study Config Algorithm 
- The search algorithm specified for the study.
- AutomatedStopping Pulumi.Config Google Native. Ml. V1. Inputs. Google Cloud Ml V1__Automated Stopping Config 
- Configuration for automated stopping of unpromising Trials.
- Metrics
List<Pulumi.Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config_Metric Spec> 
- Metric specs for the study.
- Parameters
[]GoogleCloud Ml V1_Study Config_Parameter Spec 
- The set of parameters to tune.
- Algorithm
GoogleCloud Ml V1__Study Config Algorithm 
- The search algorithm specified for the study.
- AutomatedStopping GoogleConfig Cloud Ml V1__Automated Stopping Config 
- Configuration for automated stopping of unpromising Trials.
- Metrics
[]GoogleCloud Ml V1_Study Config_Metric Spec 
- Metric specs for the study.
- parameters
List<GoogleCloud Ml V1_Study Config_Parameter Spec> 
- The set of parameters to tune.
- algorithm
GoogleCloud Ml V1__Study Config Algorithm 
- The search algorithm specified for the study.
- automatedStopping GoogleConfig Cloud Ml V1__Automated Stopping Config 
- Configuration for automated stopping of unpromising Trials.
- metrics
List<GoogleCloud Ml V1_Study Config_Metric Spec> 
- Metric specs for the study.
- parameters
GoogleCloud Ml V1_Study Config_Parameter Spec[] 
- The set of parameters to tune.
- algorithm
GoogleCloud Ml V1__Study Config Algorithm 
- The search algorithm specified for the study.
- automatedStopping GoogleConfig Cloud Ml V1__Automated Stopping Config 
- Configuration for automated stopping of unpromising Trials.
- metrics
GoogleCloud Ml V1_Study Config_Metric Spec[] 
- Metric specs for the study.
- parameters
Sequence[GoogleCloud Ml V1Study Config_Parameter Spec] 
- The set of parameters to tune.
- algorithm
GoogleCloud Ml V1Study Config Algorithm 
- The search algorithm specified for the study.
- automated_stopping_ Googleconfig Cloud Ml V1Automated Stopping Config 
- Configuration for automated stopping of unpromising Trials.
- metrics
Sequence[GoogleCloud Ml V1Study Config_Metric Spec] 
- Metric specs for the study.
- parameters List<Property Map>
- The set of parameters to tune.
- algorithm "ALGORITHM_UNSPECIFIED" | "GAUSSIAN_PROCESS_BANDIT" | "GRID_SEARCH" | "RANDOM_SEARCH"
- The search algorithm specified for the study.
- automatedStopping Property MapConfig 
- Configuration for automated stopping of unpromising Trials.
- metrics List<Property Map>
- Metric specs for the study.
GoogleCloudMlV1__StudyConfigAlgorithm, GoogleCloudMlV1__StudyConfigAlgorithmArgs            
- AlgorithmUnspecified 
- ALGORITHM_UNSPECIFIEDThe default algorithm used by the Cloud AI Platform Vizier service.
- GaussianProcess Bandit 
- GAUSSIAN_PROCESS_BANDITGaussian Process Bandit.
- GridSearch 
- GRID_SEARCHSimple grid search within the feasible space. To use grid search, all parameters must be INTEGER,CATEGORICAL, orDISCRETE.
- RandomSearch 
- RANDOM_SEARCHSimple random search within the feasible space.
- GoogleCloud Ml V1__Study Config Algorithm Algorithm Unspecified 
- ALGORITHM_UNSPECIFIEDThe default algorithm used by the Cloud AI Platform Vizier service.
- GoogleCloud Ml V1__Study Config Algorithm Gaussian Process Bandit 
- GAUSSIAN_PROCESS_BANDITGaussian Process Bandit.
- GoogleCloud Ml V1__Study Config Algorithm Grid Search 
- GRID_SEARCHSimple grid search within the feasible space. To use grid search, all parameters must be INTEGER,CATEGORICAL, orDISCRETE.
- GoogleCloud Ml V1__Study Config Algorithm Random Search 
- RANDOM_SEARCHSimple random search within the feasible space.
- AlgorithmUnspecified 
- ALGORITHM_UNSPECIFIEDThe default algorithm used by the Cloud AI Platform Vizier service.
- GaussianProcess Bandit 
- GAUSSIAN_PROCESS_BANDITGaussian Process Bandit.
- GridSearch 
- GRID_SEARCHSimple grid search within the feasible space. To use grid search, all parameters must be INTEGER,CATEGORICAL, orDISCRETE.
- RandomSearch 
- RANDOM_SEARCHSimple random search within the feasible space.
- AlgorithmUnspecified 
- ALGORITHM_UNSPECIFIEDThe default algorithm used by the Cloud AI Platform Vizier service.
- GaussianProcess Bandit 
- GAUSSIAN_PROCESS_BANDITGaussian Process Bandit.
- GridSearch 
- GRID_SEARCHSimple grid search within the feasible space. To use grid search, all parameters must be INTEGER,CATEGORICAL, orDISCRETE.
- RandomSearch 
- RANDOM_SEARCHSimple random search within the feasible space.
- ALGORITHM_UNSPECIFIED
- ALGORITHM_UNSPECIFIEDThe default algorithm used by the Cloud AI Platform Vizier service.
- GAUSSIAN_PROCESS_BANDIT
- GAUSSIAN_PROCESS_BANDITGaussian Process Bandit.
- GRID_SEARCH
- GRID_SEARCHSimple grid search within the feasible space. To use grid search, all parameters must be INTEGER,CATEGORICAL, orDISCRETE.
- RANDOM_SEARCH
- RANDOM_SEARCHSimple random search within the feasible space.
- "ALGORITHM_UNSPECIFIED"
- ALGORITHM_UNSPECIFIEDThe default algorithm used by the Cloud AI Platform Vizier service.
- "GAUSSIAN_PROCESS_BANDIT"
- GAUSSIAN_PROCESS_BANDITGaussian Process Bandit.
- "GRID_SEARCH"
- GRID_SEARCHSimple grid search within the feasible space. To use grid search, all parameters must be INTEGER,CATEGORICAL, orDISCRETE.
- "RANDOM_SEARCH"
- RANDOM_SEARCHSimple random search within the feasible space.
GoogleCloudMlV1__StudyConfigResponse, GoogleCloudMlV1__StudyConfigResponseArgs            
- Algorithm string
- The search algorithm specified for the study.
- AutomatedStopping Pulumi.Config Google Native. Ml. V1. Inputs. Google Cloud Ml V1__Automated Stopping Config Response 
- Configuration for automated stopping of unpromising Trials.
- Metrics
List<Pulumi.Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config_Metric Spec Response> 
- Metric specs for the study.
- Parameters
List<Pulumi.Google Native. Ml. V1. Inputs. Google Cloud Ml V1_Study Config_Parameter Spec Response> 
- The set of parameters to tune.
- Algorithm string
- The search algorithm specified for the study.
- AutomatedStopping GoogleConfig Cloud Ml V1__Automated Stopping Config Response 
- Configuration for automated stopping of unpromising Trials.
- Metrics
[]GoogleCloud Ml V1_Study Config_Metric Spec Response 
- Metric specs for the study.
- Parameters
[]GoogleCloud Ml V1_Study Config_Parameter Spec Response 
- The set of parameters to tune.
- algorithm String
- The search algorithm specified for the study.
- automatedStopping GoogleConfig Cloud Ml V1__Automated Stopping Config Response 
- Configuration for automated stopping of unpromising Trials.
- metrics
List<GoogleCloud Ml V1_Study Config_Metric Spec Response> 
- Metric specs for the study.
- parameters
List<GoogleCloud Ml V1_Study Config_Parameter Spec Response> 
- The set of parameters to tune.
- algorithm string
- The search algorithm specified for the study.
- automatedStopping GoogleConfig Cloud Ml V1__Automated Stopping Config Response 
- Configuration for automated stopping of unpromising Trials.
- metrics
GoogleCloud Ml V1_Study Config_Metric Spec Response[] 
- Metric specs for the study.
- parameters
GoogleCloud Ml V1_Study Config_Parameter Spec Response[] 
- The set of parameters to tune.
- algorithm str
- The search algorithm specified for the study.
- automated_stopping_ Googleconfig Cloud Ml V1Automated Stopping Config Response 
- Configuration for automated stopping of unpromising Trials.
- metrics
Sequence[GoogleCloud Ml V1Study Config_Metric Spec Response] 
- Metric specs for the study.
- parameters
Sequence[GoogleCloud Ml V1Study Config_Parameter Spec Response] 
- The set of parameters to tune.
- algorithm String
- The search algorithm specified for the study.
- automatedStopping Property MapConfig 
- Configuration for automated stopping of unpromising Trials.
- metrics List<Property Map>
- Metric specs for the study.
- parameters List<Property Map>
- The set of parameters to tune.
Package Details
- Repository
- Google Cloud Native pulumi/pulumi-google-native
- License
- Apache-2.0
Google Cloud Native is in preview. Google Cloud Classic is fully supported.