Google Cloud Native is in preview. Google Cloud Classic is fully supported.
google-native.datalabeling/v1beta1.EvaluationJob
Explore with Pulumi AI
Google Cloud Native is in preview. Google Cloud Classic is fully supported.
Creates an evaluation job. Auto-naming is currently not supported for this resource.
Create EvaluationJob Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new EvaluationJob(name: string, args: EvaluationJobArgs, opts?: CustomResourceOptions);@overload
def EvaluationJob(resource_name: str,
                  args: EvaluationJobArgs,
                  opts: Optional[ResourceOptions] = None)
@overload
def EvaluationJob(resource_name: str,
                  opts: Optional[ResourceOptions] = None,
                  annotation_spec_set: Optional[str] = None,
                  description: Optional[str] = None,
                  evaluation_job_config: Optional[GoogleCloudDatalabelingV1beta1EvaluationJobConfigArgs] = None,
                  label_missing_ground_truth: Optional[bool] = None,
                  model_version: Optional[str] = None,
                  schedule: Optional[str] = None,
                  project: Optional[str] = None)func NewEvaluationJob(ctx *Context, name string, args EvaluationJobArgs, opts ...ResourceOption) (*EvaluationJob, error)public EvaluationJob(string name, EvaluationJobArgs args, CustomResourceOptions? opts = null)
public EvaluationJob(String name, EvaluationJobArgs args)
public EvaluationJob(String name, EvaluationJobArgs args, CustomResourceOptions options)
type: google-native:datalabeling/v1beta1:EvaluationJob
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args EvaluationJobArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args EvaluationJobArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args EvaluationJobArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args EvaluationJobArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args EvaluationJobArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var evaluationJobResource = new GoogleNative.DataLabeling.V1Beta1.EvaluationJob("evaluationJobResource", new()
{
    AnnotationSpecSet = "string",
    Description = "string",
    EvaluationJobConfig = new GoogleNative.DataLabeling.V1Beta1.Inputs.GoogleCloudDatalabelingV1beta1EvaluationJobConfigArgs
    {
        BigqueryImportKeys = 
        {
            { "string", "string" },
        },
        EvaluationConfig = new GoogleNative.DataLabeling.V1Beta1.Inputs.GoogleCloudDatalabelingV1beta1EvaluationConfigArgs
        {
            BoundingBoxEvaluationOptions = new GoogleNative.DataLabeling.V1Beta1.Inputs.GoogleCloudDatalabelingV1beta1BoundingBoxEvaluationOptionsArgs
            {
                IouThreshold = 0,
            },
        },
        ExampleCount = 0,
        ExampleSamplePercentage = 0,
        BoundingPolyConfig = new GoogleNative.DataLabeling.V1Beta1.Inputs.GoogleCloudDatalabelingV1beta1BoundingPolyConfigArgs
        {
            AnnotationSpecSet = "string",
            InstructionMessage = "string",
        },
        EvaluationJobAlertConfig = new GoogleNative.DataLabeling.V1Beta1.Inputs.GoogleCloudDatalabelingV1beta1EvaluationJobAlertConfigArgs
        {
            Email = "string",
            MinAcceptableMeanAveragePrecision = 0,
        },
        HumanAnnotationConfig = new GoogleNative.DataLabeling.V1Beta1.Inputs.GoogleCloudDatalabelingV1beta1HumanAnnotationConfigArgs
        {
            AnnotatedDatasetDisplayName = "string",
            Instruction = "string",
            AnnotatedDatasetDescription = "string",
            ContributorEmails = new[]
            {
                "string",
            },
            LabelGroup = "string",
            LanguageCode = "string",
            QuestionDuration = "string",
            ReplicaCount = 0,
            UserEmailAddress = "string",
        },
        ImageClassificationConfig = new GoogleNative.DataLabeling.V1Beta1.Inputs.GoogleCloudDatalabelingV1beta1ImageClassificationConfigArgs
        {
            AnnotationSpecSet = "string",
            AllowMultiLabel = false,
            AnswerAggregationType = GoogleNative.DataLabeling.V1Beta1.GoogleCloudDatalabelingV1beta1ImageClassificationConfigAnswerAggregationType.StringAggregationTypeUnspecified,
        },
        InputConfig = new GoogleNative.DataLabeling.V1Beta1.Inputs.GoogleCloudDatalabelingV1beta1InputConfigArgs
        {
            DataType = GoogleNative.DataLabeling.V1Beta1.GoogleCloudDatalabelingV1beta1InputConfigDataType.DataTypeUnspecified,
            AnnotationType = GoogleNative.DataLabeling.V1Beta1.GoogleCloudDatalabelingV1beta1InputConfigAnnotationType.AnnotationTypeUnspecified,
            BigquerySource = new GoogleNative.DataLabeling.V1Beta1.Inputs.GoogleCloudDatalabelingV1beta1BigQuerySourceArgs
            {
                InputUri = "string",
            },
            ClassificationMetadata = new GoogleNative.DataLabeling.V1Beta1.Inputs.GoogleCloudDatalabelingV1beta1ClassificationMetadataArgs
            {
                IsMultiLabel = false,
            },
            GcsSource = new GoogleNative.DataLabeling.V1Beta1.Inputs.GoogleCloudDatalabelingV1beta1GcsSourceArgs
            {
                InputUri = "string",
                MimeType = "string",
            },
            TextMetadata = new GoogleNative.DataLabeling.V1Beta1.Inputs.GoogleCloudDatalabelingV1beta1TextMetadataArgs
            {
                LanguageCode = "string",
            },
        },
        TextClassificationConfig = new GoogleNative.DataLabeling.V1Beta1.Inputs.GoogleCloudDatalabelingV1beta1TextClassificationConfigArgs
        {
            AnnotationSpecSet = "string",
            AllowMultiLabel = false,
            SentimentConfig = new GoogleNative.DataLabeling.V1Beta1.Inputs.GoogleCloudDatalabelingV1beta1SentimentConfigArgs
            {
                EnableLabelSentimentSelection = false,
            },
        },
    },
    LabelMissingGroundTruth = false,
    ModelVersion = "string",
    Schedule = "string",
    Project = "string",
});
example, err := datalabeling.NewEvaluationJob(ctx, "evaluationJobResource", &datalabeling.EvaluationJobArgs{
	AnnotationSpecSet: pulumi.String("string"),
	Description:       pulumi.String("string"),
	EvaluationJobConfig: &datalabeling.GoogleCloudDatalabelingV1beta1EvaluationJobConfigArgs{
		BigqueryImportKeys: pulumi.StringMap{
			"string": pulumi.String("string"),
		},
		EvaluationConfig: &datalabeling.GoogleCloudDatalabelingV1beta1EvaluationConfigArgs{
			BoundingBoxEvaluationOptions: &datalabeling.GoogleCloudDatalabelingV1beta1BoundingBoxEvaluationOptionsArgs{
				IouThreshold: pulumi.Float64(0),
			},
		},
		ExampleCount:            pulumi.Int(0),
		ExampleSamplePercentage: pulumi.Float64(0),
		BoundingPolyConfig: &datalabeling.GoogleCloudDatalabelingV1beta1BoundingPolyConfigArgs{
			AnnotationSpecSet:  pulumi.String("string"),
			InstructionMessage: pulumi.String("string"),
		},
		EvaluationJobAlertConfig: &datalabeling.GoogleCloudDatalabelingV1beta1EvaluationJobAlertConfigArgs{
			Email:                             pulumi.String("string"),
			MinAcceptableMeanAveragePrecision: pulumi.Float64(0),
		},
		HumanAnnotationConfig: &datalabeling.GoogleCloudDatalabelingV1beta1HumanAnnotationConfigArgs{
			AnnotatedDatasetDisplayName: pulumi.String("string"),
			Instruction:                 pulumi.String("string"),
			AnnotatedDatasetDescription: pulumi.String("string"),
			ContributorEmails: pulumi.StringArray{
				pulumi.String("string"),
			},
			LabelGroup:       pulumi.String("string"),
			LanguageCode:     pulumi.String("string"),
			QuestionDuration: pulumi.String("string"),
			ReplicaCount:     pulumi.Int(0),
			UserEmailAddress: pulumi.String("string"),
		},
		ImageClassificationConfig: &datalabeling.GoogleCloudDatalabelingV1beta1ImageClassificationConfigArgs{
			AnnotationSpecSet:     pulumi.String("string"),
			AllowMultiLabel:       pulumi.Bool(false),
			AnswerAggregationType: datalabeling.GoogleCloudDatalabelingV1beta1ImageClassificationConfigAnswerAggregationTypeStringAggregationTypeUnspecified,
		},
		InputConfig: &datalabeling.GoogleCloudDatalabelingV1beta1InputConfigArgs{
			DataType:       datalabeling.GoogleCloudDatalabelingV1beta1InputConfigDataTypeDataTypeUnspecified,
			AnnotationType: datalabeling.GoogleCloudDatalabelingV1beta1InputConfigAnnotationTypeAnnotationTypeUnspecified,
			BigquerySource: &datalabeling.GoogleCloudDatalabelingV1beta1BigQuerySourceArgs{
				InputUri: pulumi.String("string"),
			},
			ClassificationMetadata: &datalabeling.GoogleCloudDatalabelingV1beta1ClassificationMetadataArgs{
				IsMultiLabel: pulumi.Bool(false),
			},
			GcsSource: &datalabeling.GoogleCloudDatalabelingV1beta1GcsSourceArgs{
				InputUri: pulumi.String("string"),
				MimeType: pulumi.String("string"),
			},
			TextMetadata: &datalabeling.GoogleCloudDatalabelingV1beta1TextMetadataArgs{
				LanguageCode: pulumi.String("string"),
			},
		},
		TextClassificationConfig: &datalabeling.GoogleCloudDatalabelingV1beta1TextClassificationConfigArgs{
			AnnotationSpecSet: pulumi.String("string"),
			AllowMultiLabel:   pulumi.Bool(false),
			SentimentConfig: &datalabeling.GoogleCloudDatalabelingV1beta1SentimentConfigArgs{
				EnableLabelSentimentSelection: pulumi.Bool(false),
			},
		},
	},
	LabelMissingGroundTruth: pulumi.Bool(false),
	ModelVersion:            pulumi.String("string"),
	Schedule:                pulumi.String("string"),
	Project:                 pulumi.String("string"),
})
var evaluationJobResource = new EvaluationJob("evaluationJobResource", EvaluationJobArgs.builder()
    .annotationSpecSet("string")
    .description("string")
    .evaluationJobConfig(GoogleCloudDatalabelingV1beta1EvaluationJobConfigArgs.builder()
        .bigqueryImportKeys(Map.of("string", "string"))
        .evaluationConfig(GoogleCloudDatalabelingV1beta1EvaluationConfigArgs.builder()
            .boundingBoxEvaluationOptions(GoogleCloudDatalabelingV1beta1BoundingBoxEvaluationOptionsArgs.builder()
                .iouThreshold(0)
                .build())
            .build())
        .exampleCount(0)
        .exampleSamplePercentage(0)
        .boundingPolyConfig(GoogleCloudDatalabelingV1beta1BoundingPolyConfigArgs.builder()
            .annotationSpecSet("string")
            .instructionMessage("string")
            .build())
        .evaluationJobAlertConfig(GoogleCloudDatalabelingV1beta1EvaluationJobAlertConfigArgs.builder()
            .email("string")
            .minAcceptableMeanAveragePrecision(0)
            .build())
        .humanAnnotationConfig(GoogleCloudDatalabelingV1beta1HumanAnnotationConfigArgs.builder()
            .annotatedDatasetDisplayName("string")
            .instruction("string")
            .annotatedDatasetDescription("string")
            .contributorEmails("string")
            .labelGroup("string")
            .languageCode("string")
            .questionDuration("string")
            .replicaCount(0)
            .userEmailAddress("string")
            .build())
        .imageClassificationConfig(GoogleCloudDatalabelingV1beta1ImageClassificationConfigArgs.builder()
            .annotationSpecSet("string")
            .allowMultiLabel(false)
            .answerAggregationType("STRING_AGGREGATION_TYPE_UNSPECIFIED")
            .build())
        .inputConfig(GoogleCloudDatalabelingV1beta1InputConfigArgs.builder()
            .dataType("DATA_TYPE_UNSPECIFIED")
            .annotationType("ANNOTATION_TYPE_UNSPECIFIED")
            .bigquerySource(GoogleCloudDatalabelingV1beta1BigQuerySourceArgs.builder()
                .inputUri("string")
                .build())
            .classificationMetadata(GoogleCloudDatalabelingV1beta1ClassificationMetadataArgs.builder()
                .isMultiLabel(false)
                .build())
            .gcsSource(GoogleCloudDatalabelingV1beta1GcsSourceArgs.builder()
                .inputUri("string")
                .mimeType("string")
                .build())
            .textMetadata(GoogleCloudDatalabelingV1beta1TextMetadataArgs.builder()
                .languageCode("string")
                .build())
            .build())
        .textClassificationConfig(GoogleCloudDatalabelingV1beta1TextClassificationConfigArgs.builder()
            .annotationSpecSet("string")
            .allowMultiLabel(false)
            .sentimentConfig(GoogleCloudDatalabelingV1beta1SentimentConfigArgs.builder()
                .enableLabelSentimentSelection(false)
                .build())
            .build())
        .build())
    .labelMissingGroundTruth(false)
    .modelVersion("string")
    .schedule("string")
    .project("string")
    .build());
evaluation_job_resource = google_native.datalabeling.v1beta1.EvaluationJob("evaluationJobResource",
    annotation_spec_set="string",
    description="string",
    evaluation_job_config={
        "bigquery_import_keys": {
            "string": "string",
        },
        "evaluation_config": {
            "bounding_box_evaluation_options": {
                "iou_threshold": 0,
            },
        },
        "example_count": 0,
        "example_sample_percentage": 0,
        "bounding_poly_config": {
            "annotation_spec_set": "string",
            "instruction_message": "string",
        },
        "evaluation_job_alert_config": {
            "email": "string",
            "min_acceptable_mean_average_precision": 0,
        },
        "human_annotation_config": {
            "annotated_dataset_display_name": "string",
            "instruction": "string",
            "annotated_dataset_description": "string",
            "contributor_emails": ["string"],
            "label_group": "string",
            "language_code": "string",
            "question_duration": "string",
            "replica_count": 0,
            "user_email_address": "string",
        },
        "image_classification_config": {
            "annotation_spec_set": "string",
            "allow_multi_label": False,
            "answer_aggregation_type": google_native.datalabeling.v1beta1.GoogleCloudDatalabelingV1beta1ImageClassificationConfigAnswerAggregationType.STRING_AGGREGATION_TYPE_UNSPECIFIED,
        },
        "input_config": {
            "data_type": google_native.datalabeling.v1beta1.GoogleCloudDatalabelingV1beta1InputConfigDataType.DATA_TYPE_UNSPECIFIED,
            "annotation_type": google_native.datalabeling.v1beta1.GoogleCloudDatalabelingV1beta1InputConfigAnnotationType.ANNOTATION_TYPE_UNSPECIFIED,
            "bigquery_source": {
                "input_uri": "string",
            },
            "classification_metadata": {
                "is_multi_label": False,
            },
            "gcs_source": {
                "input_uri": "string",
                "mime_type": "string",
            },
            "text_metadata": {
                "language_code": "string",
            },
        },
        "text_classification_config": {
            "annotation_spec_set": "string",
            "allow_multi_label": False,
            "sentiment_config": {
                "enable_label_sentiment_selection": False,
            },
        },
    },
    label_missing_ground_truth=False,
    model_version="string",
    schedule="string",
    project="string")
const evaluationJobResource = new google_native.datalabeling.v1beta1.EvaluationJob("evaluationJobResource", {
    annotationSpecSet: "string",
    description: "string",
    evaluationJobConfig: {
        bigqueryImportKeys: {
            string: "string",
        },
        evaluationConfig: {
            boundingBoxEvaluationOptions: {
                iouThreshold: 0,
            },
        },
        exampleCount: 0,
        exampleSamplePercentage: 0,
        boundingPolyConfig: {
            annotationSpecSet: "string",
            instructionMessage: "string",
        },
        evaluationJobAlertConfig: {
            email: "string",
            minAcceptableMeanAveragePrecision: 0,
        },
        humanAnnotationConfig: {
            annotatedDatasetDisplayName: "string",
            instruction: "string",
            annotatedDatasetDescription: "string",
            contributorEmails: ["string"],
            labelGroup: "string",
            languageCode: "string",
            questionDuration: "string",
            replicaCount: 0,
            userEmailAddress: "string",
        },
        imageClassificationConfig: {
            annotationSpecSet: "string",
            allowMultiLabel: false,
            answerAggregationType: google_native.datalabeling.v1beta1.GoogleCloudDatalabelingV1beta1ImageClassificationConfigAnswerAggregationType.StringAggregationTypeUnspecified,
        },
        inputConfig: {
            dataType: google_native.datalabeling.v1beta1.GoogleCloudDatalabelingV1beta1InputConfigDataType.DataTypeUnspecified,
            annotationType: google_native.datalabeling.v1beta1.GoogleCloudDatalabelingV1beta1InputConfigAnnotationType.AnnotationTypeUnspecified,
            bigquerySource: {
                inputUri: "string",
            },
            classificationMetadata: {
                isMultiLabel: false,
            },
            gcsSource: {
                inputUri: "string",
                mimeType: "string",
            },
            textMetadata: {
                languageCode: "string",
            },
        },
        textClassificationConfig: {
            annotationSpecSet: "string",
            allowMultiLabel: false,
            sentimentConfig: {
                enableLabelSentimentSelection: false,
            },
        },
    },
    labelMissingGroundTruth: false,
    modelVersion: "string",
    schedule: "string",
    project: "string",
});
type: google-native:datalabeling/v1beta1:EvaluationJob
properties:
    annotationSpecSet: string
    description: string
    evaluationJobConfig:
        bigqueryImportKeys:
            string: string
        boundingPolyConfig:
            annotationSpecSet: string
            instructionMessage: string
        evaluationConfig:
            boundingBoxEvaluationOptions:
                iouThreshold: 0
        evaluationJobAlertConfig:
            email: string
            minAcceptableMeanAveragePrecision: 0
        exampleCount: 0
        exampleSamplePercentage: 0
        humanAnnotationConfig:
            annotatedDatasetDescription: string
            annotatedDatasetDisplayName: string
            contributorEmails:
                - string
            instruction: string
            labelGroup: string
            languageCode: string
            questionDuration: string
            replicaCount: 0
            userEmailAddress: string
        imageClassificationConfig:
            allowMultiLabel: false
            annotationSpecSet: string
            answerAggregationType: STRING_AGGREGATION_TYPE_UNSPECIFIED
        inputConfig:
            annotationType: ANNOTATION_TYPE_UNSPECIFIED
            bigquerySource:
                inputUri: string
            classificationMetadata:
                isMultiLabel: false
            dataType: DATA_TYPE_UNSPECIFIED
            gcsSource:
                inputUri: string
                mimeType: string
            textMetadata:
                languageCode: string
        textClassificationConfig:
            allowMultiLabel: false
            annotationSpecSet: string
            sentimentConfig:
                enableLabelSentimentSelection: false
    labelMissingGroundTruth: false
    modelVersion: string
    project: string
    schedule: string
EvaluationJob Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The EvaluationJob resource accepts the following input properties:
- AnnotationSpec stringSet 
- Name of the AnnotationSpecSet describing all the labels that your machine learning model outputs. You must create this resource before you create an evaluation job and provide its name in the following format: "projects/{project_id}/annotationSpecSets/{annotation_spec_set_id}"
- Description string
- Description of the job. The description can be up to 25,000 characters long.
- EvaluationJob Pulumi.Config Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Evaluation Job Config 
- Configuration details for the evaluation job.
- LabelMissing boolGround Truth 
- Whether you want Data Labeling Service to provide ground truth labels for prediction input. If you want the service to assign human labelers to annotate your data, set this to true. If you want to provide your own ground truth labels in the evaluation job's BigQuery table, set this tofalse.
- ModelVersion string
- The AI Platform Prediction model version to be evaluated. Prediction input and output is sampled from this model version. When creating an evaluation job, specify the model version in the following format: "projects/{project_id}/models/{model_name}/versions/{version_name}" There can only be one evaluation job per model version.
- Schedule string
- Describes the interval at which the job runs. This interval must be at least 1 day, and it is rounded to the nearest day. For example, if you specify a 50-hour interval, the job runs every 2 days. You can provide the schedule in crontab format or in an English-like format. Regardless of what you specify, the job will run at 10:00 AM UTC. Only the interval from this schedule is used, not the specific time of day.
- Project string
- AnnotationSpec stringSet 
- Name of the AnnotationSpecSet describing all the labels that your machine learning model outputs. You must create this resource before you create an evaluation job and provide its name in the following format: "projects/{project_id}/annotationSpecSets/{annotation_spec_set_id}"
- Description string
- Description of the job. The description can be up to 25,000 characters long.
- EvaluationJob GoogleConfig Cloud Datalabeling V1beta1Evaluation Job Config Args 
- Configuration details for the evaluation job.
- LabelMissing boolGround Truth 
- Whether you want Data Labeling Service to provide ground truth labels for prediction input. If you want the service to assign human labelers to annotate your data, set this to true. If you want to provide your own ground truth labels in the evaluation job's BigQuery table, set this tofalse.
- ModelVersion string
- The AI Platform Prediction model version to be evaluated. Prediction input and output is sampled from this model version. When creating an evaluation job, specify the model version in the following format: "projects/{project_id}/models/{model_name}/versions/{version_name}" There can only be one evaluation job per model version.
- Schedule string
- Describes the interval at which the job runs. This interval must be at least 1 day, and it is rounded to the nearest day. For example, if you specify a 50-hour interval, the job runs every 2 days. You can provide the schedule in crontab format or in an English-like format. Regardless of what you specify, the job will run at 10:00 AM UTC. Only the interval from this schedule is used, not the specific time of day.
- Project string
- annotationSpec StringSet 
- Name of the AnnotationSpecSet describing all the labels that your machine learning model outputs. You must create this resource before you create an evaluation job and provide its name in the following format: "projects/{project_id}/annotationSpecSets/{annotation_spec_set_id}"
- description String
- Description of the job. The description can be up to 25,000 characters long.
- evaluationJob GoogleConfig Cloud Datalabeling V1beta1Evaluation Job Config 
- Configuration details for the evaluation job.
- labelMissing BooleanGround Truth 
- Whether you want Data Labeling Service to provide ground truth labels for prediction input. If you want the service to assign human labelers to annotate your data, set this to true. If you want to provide your own ground truth labels in the evaluation job's BigQuery table, set this tofalse.
- modelVersion String
- The AI Platform Prediction model version to be evaluated. Prediction input and output is sampled from this model version. When creating an evaluation job, specify the model version in the following format: "projects/{project_id}/models/{model_name}/versions/{version_name}" There can only be one evaluation job per model version.
- schedule String
- Describes the interval at which the job runs. This interval must be at least 1 day, and it is rounded to the nearest day. For example, if you specify a 50-hour interval, the job runs every 2 days. You can provide the schedule in crontab format or in an English-like format. Regardless of what you specify, the job will run at 10:00 AM UTC. Only the interval from this schedule is used, not the specific time of day.
- project String
- annotationSpec stringSet 
- Name of the AnnotationSpecSet describing all the labels that your machine learning model outputs. You must create this resource before you create an evaluation job and provide its name in the following format: "projects/{project_id}/annotationSpecSets/{annotation_spec_set_id}"
- description string
- Description of the job. The description can be up to 25,000 characters long.
- evaluationJob GoogleConfig Cloud Datalabeling V1beta1Evaluation Job Config 
- Configuration details for the evaluation job.
- labelMissing booleanGround Truth 
- Whether you want Data Labeling Service to provide ground truth labels for prediction input. If you want the service to assign human labelers to annotate your data, set this to true. If you want to provide your own ground truth labels in the evaluation job's BigQuery table, set this tofalse.
- modelVersion string
- The AI Platform Prediction model version to be evaluated. Prediction input and output is sampled from this model version. When creating an evaluation job, specify the model version in the following format: "projects/{project_id}/models/{model_name}/versions/{version_name}" There can only be one evaluation job per model version.
- schedule string
- Describes the interval at which the job runs. This interval must be at least 1 day, and it is rounded to the nearest day. For example, if you specify a 50-hour interval, the job runs every 2 days. You can provide the schedule in crontab format or in an English-like format. Regardless of what you specify, the job will run at 10:00 AM UTC. Only the interval from this schedule is used, not the specific time of day.
- project string
- annotation_spec_ strset 
- Name of the AnnotationSpecSet describing all the labels that your machine learning model outputs. You must create this resource before you create an evaluation job and provide its name in the following format: "projects/{project_id}/annotationSpecSets/{annotation_spec_set_id}"
- description str
- Description of the job. The description can be up to 25,000 characters long.
- evaluation_job_ Googleconfig Cloud Datalabeling V1beta1Evaluation Job Config Args 
- Configuration details for the evaluation job.
- label_missing_ boolground_ truth 
- Whether you want Data Labeling Service to provide ground truth labels for prediction input. If you want the service to assign human labelers to annotate your data, set this to true. If you want to provide your own ground truth labels in the evaluation job's BigQuery table, set this tofalse.
- model_version str
- The AI Platform Prediction model version to be evaluated. Prediction input and output is sampled from this model version. When creating an evaluation job, specify the model version in the following format: "projects/{project_id}/models/{model_name}/versions/{version_name}" There can only be one evaluation job per model version.
- schedule str
- Describes the interval at which the job runs. This interval must be at least 1 day, and it is rounded to the nearest day. For example, if you specify a 50-hour interval, the job runs every 2 days. You can provide the schedule in crontab format or in an English-like format. Regardless of what you specify, the job will run at 10:00 AM UTC. Only the interval from this schedule is used, not the specific time of day.
- project str
- annotationSpec StringSet 
- Name of the AnnotationSpecSet describing all the labels that your machine learning model outputs. You must create this resource before you create an evaluation job and provide its name in the following format: "projects/{project_id}/annotationSpecSets/{annotation_spec_set_id}"
- description String
- Description of the job. The description can be up to 25,000 characters long.
- evaluationJob Property MapConfig 
- Configuration details for the evaluation job.
- labelMissing BooleanGround Truth 
- Whether you want Data Labeling Service to provide ground truth labels for prediction input. If you want the service to assign human labelers to annotate your data, set this to true. If you want to provide your own ground truth labels in the evaluation job's BigQuery table, set this tofalse.
- modelVersion String
- The AI Platform Prediction model version to be evaluated. Prediction input and output is sampled from this model version. When creating an evaluation job, specify the model version in the following format: "projects/{project_id}/models/{model_name}/versions/{version_name}" There can only be one evaluation job per model version.
- schedule String
- Describes the interval at which the job runs. This interval must be at least 1 day, and it is rounded to the nearest day. For example, if you specify a 50-hour interval, the job runs every 2 days. You can provide the schedule in crontab format or in an English-like format. Regardless of what you specify, the job will run at 10:00 AM UTC. Only the interval from this schedule is used, not the specific time of day.
- project String
Outputs
All input properties are implicitly available as output properties. Additionally, the EvaluationJob resource produces the following output properties:
- Attempts
List<Pulumi.Google Native. Data Labeling. V1Beta1. Outputs. Google Cloud Datalabeling V1beta1Attempt Response> 
- Every time the evaluation job runs and an error occurs, the failed attempt is appended to this array.
- CreateTime string
- Timestamp of when this evaluation job was created.
- Id string
- The provider-assigned unique ID for this managed resource.
- Name string
- After you create a job, Data Labeling Service assigns a name to the job with the following format: "projects/{project_id}/evaluationJobs/ {evaluation_job_id}"
- State string
- Describes the current state of the job.
- Attempts
[]GoogleCloud Datalabeling V1beta1Attempt Response 
- Every time the evaluation job runs and an error occurs, the failed attempt is appended to this array.
- CreateTime string
- Timestamp of when this evaluation job was created.
- Id string
- The provider-assigned unique ID for this managed resource.
- Name string
- After you create a job, Data Labeling Service assigns a name to the job with the following format: "projects/{project_id}/evaluationJobs/ {evaluation_job_id}"
- State string
- Describes the current state of the job.
- attempts
List<GoogleCloud Datalabeling V1beta1Attempt Response> 
- Every time the evaluation job runs and an error occurs, the failed attempt is appended to this array.
- createTime String
- Timestamp of when this evaluation job was created.
- id String
- The provider-assigned unique ID for this managed resource.
- name String
- After you create a job, Data Labeling Service assigns a name to the job with the following format: "projects/{project_id}/evaluationJobs/ {evaluation_job_id}"
- state String
- Describes the current state of the job.
- attempts
GoogleCloud Datalabeling V1beta1Attempt Response[] 
- Every time the evaluation job runs and an error occurs, the failed attempt is appended to this array.
- createTime string
- Timestamp of when this evaluation job was created.
- id string
- The provider-assigned unique ID for this managed resource.
- name string
- After you create a job, Data Labeling Service assigns a name to the job with the following format: "projects/{project_id}/evaluationJobs/ {evaluation_job_id}"
- state string
- Describes the current state of the job.
- attempts
Sequence[GoogleCloud Datalabeling V1beta1Attempt Response] 
- Every time the evaluation job runs and an error occurs, the failed attempt is appended to this array.
- create_time str
- Timestamp of when this evaluation job was created.
- id str
- The provider-assigned unique ID for this managed resource.
- name str
- After you create a job, Data Labeling Service assigns a name to the job with the following format: "projects/{project_id}/evaluationJobs/ {evaluation_job_id}"
- state str
- Describes the current state of the job.
- attempts List<Property Map>
- Every time the evaluation job runs and an error occurs, the failed attempt is appended to this array.
- createTime String
- Timestamp of when this evaluation job was created.
- id String
- The provider-assigned unique ID for this managed resource.
- name String
- After you create a job, Data Labeling Service assigns a name to the job with the following format: "projects/{project_id}/evaluationJobs/ {evaluation_job_id}"
- state String
- Describes the current state of the job.
Supporting Types
GoogleCloudDatalabelingV1beta1AttemptResponse, GoogleCloudDatalabelingV1beta1AttemptResponseArgs          
- AttemptTime string
- PartialFailures List<Pulumi.Google Native. Data Labeling. V1Beta1. Inputs. Google Rpc Status Response> 
- Details of errors that occurred.
- AttemptTime string
- PartialFailures []GoogleRpc Status Response 
- Details of errors that occurred.
- attemptTime String
- partialFailures List<GoogleRpc Status Response> 
- Details of errors that occurred.
- attemptTime string
- partialFailures GoogleRpc Status Response[] 
- Details of errors that occurred.
- attempt_time str
- partial_failures Sequence[GoogleRpc Status Response] 
- Details of errors that occurred.
- attemptTime String
- partialFailures List<Property Map>
- Details of errors that occurred.
GoogleCloudDatalabelingV1beta1BigQuerySource, GoogleCloudDatalabelingV1beta1BigQuerySourceArgs            
- InputUri string
- BigQuery URI to a table, up to 2,000 characters long. If you specify the URI of a table that does not exist, Data Labeling Service creates a table at the URI with the correct schema when you create your EvaluationJob. If you specify the URI of a table that already exists, it must have the correct schema. Provide the table URI in the following format: "bq://{your_project_id}/ {your_dataset_name}/{your_table_name}" Learn more.
- InputUri string
- BigQuery URI to a table, up to 2,000 characters long. If you specify the URI of a table that does not exist, Data Labeling Service creates a table at the URI with the correct schema when you create your EvaluationJob. If you specify the URI of a table that already exists, it must have the correct schema. Provide the table URI in the following format: "bq://{your_project_id}/ {your_dataset_name}/{your_table_name}" Learn more.
- inputUri String
- BigQuery URI to a table, up to 2,000 characters long. If you specify the URI of a table that does not exist, Data Labeling Service creates a table at the URI with the correct schema when you create your EvaluationJob. If you specify the URI of a table that already exists, it must have the correct schema. Provide the table URI in the following format: "bq://{your_project_id}/ {your_dataset_name}/{your_table_name}" Learn more.
- inputUri string
- BigQuery URI to a table, up to 2,000 characters long. If you specify the URI of a table that does not exist, Data Labeling Service creates a table at the URI with the correct schema when you create your EvaluationJob. If you specify the URI of a table that already exists, it must have the correct schema. Provide the table URI in the following format: "bq://{your_project_id}/ {your_dataset_name}/{your_table_name}" Learn more.
- input_uri str
- BigQuery URI to a table, up to 2,000 characters long. If you specify the URI of a table that does not exist, Data Labeling Service creates a table at the URI with the correct schema when you create your EvaluationJob. If you specify the URI of a table that already exists, it must have the correct schema. Provide the table URI in the following format: "bq://{your_project_id}/ {your_dataset_name}/{your_table_name}" Learn more.
- inputUri String
- BigQuery URI to a table, up to 2,000 characters long. If you specify the URI of a table that does not exist, Data Labeling Service creates a table at the URI with the correct schema when you create your EvaluationJob. If you specify the URI of a table that already exists, it must have the correct schema. Provide the table URI in the following format: "bq://{your_project_id}/ {your_dataset_name}/{your_table_name}" Learn more.
GoogleCloudDatalabelingV1beta1BigQuerySourceResponse, GoogleCloudDatalabelingV1beta1BigQuerySourceResponseArgs              
- InputUri string
- BigQuery URI to a table, up to 2,000 characters long. If you specify the URI of a table that does not exist, Data Labeling Service creates a table at the URI with the correct schema when you create your EvaluationJob. If you specify the URI of a table that already exists, it must have the correct schema. Provide the table URI in the following format: "bq://{your_project_id}/ {your_dataset_name}/{your_table_name}" Learn more.
- InputUri string
- BigQuery URI to a table, up to 2,000 characters long. If you specify the URI of a table that does not exist, Data Labeling Service creates a table at the URI with the correct schema when you create your EvaluationJob. If you specify the URI of a table that already exists, it must have the correct schema. Provide the table URI in the following format: "bq://{your_project_id}/ {your_dataset_name}/{your_table_name}" Learn more.
- inputUri String
- BigQuery URI to a table, up to 2,000 characters long. If you specify the URI of a table that does not exist, Data Labeling Service creates a table at the URI with the correct schema when you create your EvaluationJob. If you specify the URI of a table that already exists, it must have the correct schema. Provide the table URI in the following format: "bq://{your_project_id}/ {your_dataset_name}/{your_table_name}" Learn more.
- inputUri string
- BigQuery URI to a table, up to 2,000 characters long. If you specify the URI of a table that does not exist, Data Labeling Service creates a table at the URI with the correct schema when you create your EvaluationJob. If you specify the URI of a table that already exists, it must have the correct schema. Provide the table URI in the following format: "bq://{your_project_id}/ {your_dataset_name}/{your_table_name}" Learn more.
- input_uri str
- BigQuery URI to a table, up to 2,000 characters long. If you specify the URI of a table that does not exist, Data Labeling Service creates a table at the URI with the correct schema when you create your EvaluationJob. If you specify the URI of a table that already exists, it must have the correct schema. Provide the table URI in the following format: "bq://{your_project_id}/ {your_dataset_name}/{your_table_name}" Learn more.
- inputUri String
- BigQuery URI to a table, up to 2,000 characters long. If you specify the URI of a table that does not exist, Data Labeling Service creates a table at the URI with the correct schema when you create your EvaluationJob. If you specify the URI of a table that already exists, it must have the correct schema. Provide the table URI in the following format: "bq://{your_project_id}/ {your_dataset_name}/{your_table_name}" Learn more.
GoogleCloudDatalabelingV1beta1BoundingBoxEvaluationOptions, GoogleCloudDatalabelingV1beta1BoundingBoxEvaluationOptionsArgs              
- IouThreshold double
- Minimum intersection-over-union (IOU) required for 2 bounding boxes to be considered a match. This must be a number between 0 and 1.
- IouThreshold float64
- Minimum intersection-over-union (IOU) required for 2 bounding boxes to be considered a match. This must be a number between 0 and 1.
- iouThreshold Double
- Minimum intersection-over-union (IOU) required for 2 bounding boxes to be considered a match. This must be a number between 0 and 1.
- iouThreshold number
- Minimum intersection-over-union (IOU) required for 2 bounding boxes to be considered a match. This must be a number between 0 and 1.
- iou_threshold float
- Minimum intersection-over-union (IOU) required for 2 bounding boxes to be considered a match. This must be a number between 0 and 1.
- iouThreshold Number
- Minimum intersection-over-union (IOU) required for 2 bounding boxes to be considered a match. This must be a number between 0 and 1.
GoogleCloudDatalabelingV1beta1BoundingBoxEvaluationOptionsResponse, GoogleCloudDatalabelingV1beta1BoundingBoxEvaluationOptionsResponseArgs                
- IouThreshold double
- Minimum intersection-over-union (IOU) required for 2 bounding boxes to be considered a match. This must be a number between 0 and 1.
- IouThreshold float64
- Minimum intersection-over-union (IOU) required for 2 bounding boxes to be considered a match. This must be a number between 0 and 1.
- iouThreshold Double
- Minimum intersection-over-union (IOU) required for 2 bounding boxes to be considered a match. This must be a number between 0 and 1.
- iouThreshold number
- Minimum intersection-over-union (IOU) required for 2 bounding boxes to be considered a match. This must be a number between 0 and 1.
- iou_threshold float
- Minimum intersection-over-union (IOU) required for 2 bounding boxes to be considered a match. This must be a number between 0 and 1.
- iouThreshold Number
- Minimum intersection-over-union (IOU) required for 2 bounding boxes to be considered a match. This must be a number between 0 and 1.
GoogleCloudDatalabelingV1beta1BoundingPolyConfig, GoogleCloudDatalabelingV1beta1BoundingPolyConfigArgs            
- AnnotationSpec stringSet 
- Annotation spec set resource name.
- InstructionMessage string
- Optional. Instruction message showed on contributors UI.
- AnnotationSpec stringSet 
- Annotation spec set resource name.
- InstructionMessage string
- Optional. Instruction message showed on contributors UI.
- annotationSpec StringSet 
- Annotation spec set resource name.
- instructionMessage String
- Optional. Instruction message showed on contributors UI.
- annotationSpec stringSet 
- Annotation spec set resource name.
- instructionMessage string
- Optional. Instruction message showed on contributors UI.
- annotation_spec_ strset 
- Annotation spec set resource name.
- instruction_message str
- Optional. Instruction message showed on contributors UI.
- annotationSpec StringSet 
- Annotation spec set resource name.
- instructionMessage String
- Optional. Instruction message showed on contributors UI.
GoogleCloudDatalabelingV1beta1BoundingPolyConfigResponse, GoogleCloudDatalabelingV1beta1BoundingPolyConfigResponseArgs              
- AnnotationSpec stringSet 
- Annotation spec set resource name.
- InstructionMessage string
- Optional. Instruction message showed on contributors UI.
- AnnotationSpec stringSet 
- Annotation spec set resource name.
- InstructionMessage string
- Optional. Instruction message showed on contributors UI.
- annotationSpec StringSet 
- Annotation spec set resource name.
- instructionMessage String
- Optional. Instruction message showed on contributors UI.
- annotationSpec stringSet 
- Annotation spec set resource name.
- instructionMessage string
- Optional. Instruction message showed on contributors UI.
- annotation_spec_ strset 
- Annotation spec set resource name.
- instruction_message str
- Optional. Instruction message showed on contributors UI.
- annotationSpec StringSet 
- Annotation spec set resource name.
- instructionMessage String
- Optional. Instruction message showed on contributors UI.
GoogleCloudDatalabelingV1beta1ClassificationMetadata, GoogleCloudDatalabelingV1beta1ClassificationMetadataArgs          
- IsMulti boolLabel 
- Whether the classification task is multi-label or not.
- IsMulti boolLabel 
- Whether the classification task is multi-label or not.
- isMulti BooleanLabel 
- Whether the classification task is multi-label or not.
- isMulti booleanLabel 
- Whether the classification task is multi-label or not.
- is_multi_ boollabel 
- Whether the classification task is multi-label or not.
- isMulti BooleanLabel 
- Whether the classification task is multi-label or not.
GoogleCloudDatalabelingV1beta1ClassificationMetadataResponse, GoogleCloudDatalabelingV1beta1ClassificationMetadataResponseArgs            
- IsMulti boolLabel 
- Whether the classification task is multi-label or not.
- IsMulti boolLabel 
- Whether the classification task is multi-label or not.
- isMulti BooleanLabel 
- Whether the classification task is multi-label or not.
- isMulti booleanLabel 
- Whether the classification task is multi-label or not.
- is_multi_ boollabel 
- Whether the classification task is multi-label or not.
- isMulti BooleanLabel 
- Whether the classification task is multi-label or not.
GoogleCloudDatalabelingV1beta1EvaluationConfig, GoogleCloudDatalabelingV1beta1EvaluationConfigArgs          
- BoundingBox Pulumi.Evaluation Options Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Bounding Box Evaluation Options 
- Only specify this field if the related model performs image object detection (IMAGE_BOUNDING_BOX_ANNOTATION). Describes how to evaluate bounding boxes.
- BoundingBox GoogleEvaluation Options Cloud Datalabeling V1beta1Bounding Box Evaluation Options 
- Only specify this field if the related model performs image object detection (IMAGE_BOUNDING_BOX_ANNOTATION). Describes how to evaluate bounding boxes.
- boundingBox GoogleEvaluation Options Cloud Datalabeling V1beta1Bounding Box Evaluation Options 
- Only specify this field if the related model performs image object detection (IMAGE_BOUNDING_BOX_ANNOTATION). Describes how to evaluate bounding boxes.
- boundingBox GoogleEvaluation Options Cloud Datalabeling V1beta1Bounding Box Evaluation Options 
- Only specify this field if the related model performs image object detection (IMAGE_BOUNDING_BOX_ANNOTATION). Describes how to evaluate bounding boxes.
- bounding_box_ Googleevaluation_ options Cloud Datalabeling V1beta1Bounding Box Evaluation Options 
- Only specify this field if the related model performs image object detection (IMAGE_BOUNDING_BOX_ANNOTATION). Describes how to evaluate bounding boxes.
- boundingBox Property MapEvaluation Options 
- Only specify this field if the related model performs image object detection (IMAGE_BOUNDING_BOX_ANNOTATION). Describes how to evaluate bounding boxes.
GoogleCloudDatalabelingV1beta1EvaluationConfigResponse, GoogleCloudDatalabelingV1beta1EvaluationConfigResponseArgs            
- BoundingBox Pulumi.Evaluation Options Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Bounding Box Evaluation Options Response 
- Only specify this field if the related model performs image object detection (IMAGE_BOUNDING_BOX_ANNOTATION). Describes how to evaluate bounding boxes.
- BoundingBox GoogleEvaluation Options Cloud Datalabeling V1beta1Bounding Box Evaluation Options Response 
- Only specify this field if the related model performs image object detection (IMAGE_BOUNDING_BOX_ANNOTATION). Describes how to evaluate bounding boxes.
- boundingBox GoogleEvaluation Options Cloud Datalabeling V1beta1Bounding Box Evaluation Options Response 
- Only specify this field if the related model performs image object detection (IMAGE_BOUNDING_BOX_ANNOTATION). Describes how to evaluate bounding boxes.
- boundingBox GoogleEvaluation Options Cloud Datalabeling V1beta1Bounding Box Evaluation Options Response 
- Only specify this field if the related model performs image object detection (IMAGE_BOUNDING_BOX_ANNOTATION). Describes how to evaluate bounding boxes.
- bounding_box_ Googleevaluation_ options Cloud Datalabeling V1beta1Bounding Box Evaluation Options Response 
- Only specify this field if the related model performs image object detection (IMAGE_BOUNDING_BOX_ANNOTATION). Describes how to evaluate bounding boxes.
- boundingBox Property MapEvaluation Options 
- Only specify this field if the related model performs image object detection (IMAGE_BOUNDING_BOX_ANNOTATION). Describes how to evaluate bounding boxes.
GoogleCloudDatalabelingV1beta1EvaluationJobAlertConfig, GoogleCloudDatalabelingV1beta1EvaluationJobAlertConfigArgs              
- Email string
- An email address to send alerts to.
- double
- A number between 0 and 1 that describes a minimum mean average precision threshold. When the evaluation job runs, if it calculates that your model version's predictions from the recent interval have meanAveragePrecision below this threshold, then it sends an alert to your specified email.
- Email string
- An email address to send alerts to.
- float64
- A number between 0 and 1 that describes a minimum mean average precision threshold. When the evaluation job runs, if it calculates that your model version's predictions from the recent interval have meanAveragePrecision below this threshold, then it sends an alert to your specified email.
- email String
- An email address to send alerts to.
- Double
- A number between 0 and 1 that describes a minimum mean average precision threshold. When the evaluation job runs, if it calculates that your model version's predictions from the recent interval have meanAveragePrecision below this threshold, then it sends an alert to your specified email.
- email string
- An email address to send alerts to.
- number
- A number between 0 and 1 that describes a minimum mean average precision threshold. When the evaluation job runs, if it calculates that your model version's predictions from the recent interval have meanAveragePrecision below this threshold, then it sends an alert to your specified email.
- email str
- An email address to send alerts to.
- min_acceptable_ floatmean_ average_ precision 
- A number between 0 and 1 that describes a minimum mean average precision threshold. When the evaluation job runs, if it calculates that your model version's predictions from the recent interval have meanAveragePrecision below this threshold, then it sends an alert to your specified email.
- email String
- An email address to send alerts to.
- Number
- A number between 0 and 1 that describes a minimum mean average precision threshold. When the evaluation job runs, if it calculates that your model version's predictions from the recent interval have meanAveragePrecision below this threshold, then it sends an alert to your specified email.
GoogleCloudDatalabelingV1beta1EvaluationJobAlertConfigResponse, GoogleCloudDatalabelingV1beta1EvaluationJobAlertConfigResponseArgs                
- Email string
- An email address to send alerts to.
- double
- A number between 0 and 1 that describes a minimum mean average precision threshold. When the evaluation job runs, if it calculates that your model version's predictions from the recent interval have meanAveragePrecision below this threshold, then it sends an alert to your specified email.
- Email string
- An email address to send alerts to.
- float64
- A number between 0 and 1 that describes a minimum mean average precision threshold. When the evaluation job runs, if it calculates that your model version's predictions from the recent interval have meanAveragePrecision below this threshold, then it sends an alert to your specified email.
- email String
- An email address to send alerts to.
- Double
- A number between 0 and 1 that describes a minimum mean average precision threshold. When the evaluation job runs, if it calculates that your model version's predictions from the recent interval have meanAveragePrecision below this threshold, then it sends an alert to your specified email.
- email string
- An email address to send alerts to.
- number
- A number between 0 and 1 that describes a minimum mean average precision threshold. When the evaluation job runs, if it calculates that your model version's predictions from the recent interval have meanAveragePrecision below this threshold, then it sends an alert to your specified email.
- email str
- An email address to send alerts to.
- min_acceptable_ floatmean_ average_ precision 
- A number between 0 and 1 that describes a minimum mean average precision threshold. When the evaluation job runs, if it calculates that your model version's predictions from the recent interval have meanAveragePrecision below this threshold, then it sends an alert to your specified email.
- email String
- An email address to send alerts to.
- Number
- A number between 0 and 1 that describes a minimum mean average precision threshold. When the evaluation job runs, if it calculates that your model version's predictions from the recent interval have meanAveragePrecision below this threshold, then it sends an alert to your specified email.
GoogleCloudDatalabelingV1beta1EvaluationJobConfig, GoogleCloudDatalabelingV1beta1EvaluationJobConfigArgs            
- BigqueryImport Dictionary<string, string>Keys 
- Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * data_json_key: the data key for prediction input. You must provide either this key orreference_json_key. *reference_json_key: the data reference key for prediction input. You must provide either this key ordata_json_key. *label_json_key: the label key for prediction output. Required. *label_score_json_key: the score key for prediction output. Required. *bounding_box_json_key: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys.
- EvaluationConfig Pulumi.Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Evaluation Config 
- Details for calculating evaluation metrics and creating Evaulations. If your model version performs image object detection, you must specify the boundingBoxEvaluationOptionsfield within this configuration. Otherwise, provide an empty object for this configuration.
- ExampleCount int
- The maximum number of predictions to sample and save to BigQuery during each evaluation interval. This limit overrides example_sample_percentage: even if the service has not sampled enough predictions to fulfillexample_sample_perecentageduring an interval, it stops sampling predictions when it meets this limit.
- ExampleSample doublePercentage 
- Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
- BoundingPoly Pulumi.Config Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Bounding Poly Config 
- Specify this field if your model version performs image object detection (bounding box detection). annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.
- EvaluationJob Pulumi.Alert Config Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Evaluation Job Alert Config 
- Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
- HumanAnnotation Pulumi.Config Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Human Annotation Config 
- Optional. Details for human annotation of your data. If you set labelMissingGroundTruth to truefor this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an Instruction resource before you can specify this field. Provide the name of the instruction resource in theinstructionfield within this configuration.
- ImageClassification Pulumi.Config Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Image Classification Config 
- Specify this field if your model version performs image classification or general classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- InputConfig Pulumi.Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Input Config 
- Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * dataTypemust be one ofIMAGE,TEXT, orGENERAL_DATA. *annotationTypemust be one ofIMAGE_CLASSIFICATION_ANNOTATION,TEXT_CLASSIFICATION_ANNOTATION,GENERAL_CLASSIFICATION_ANNOTATION, orIMAGE_BOUNDING_BOX_ANNOTATION(image object detection). * If your machine learning model performs classification, you must specifyclassificationMetadata.isMultiLabel. * You must specifybigquerySource(notgcsSource).
- TextClassification Pulumi.Config Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Text Classification Config 
- Specify this field if your model version performs text classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- BigqueryImport map[string]stringKeys 
- Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * data_json_key: the data key for prediction input. You must provide either this key orreference_json_key. *reference_json_key: the data reference key for prediction input. You must provide either this key ordata_json_key. *label_json_key: the label key for prediction output. Required. *label_score_json_key: the score key for prediction output. Required. *bounding_box_json_key: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys.
- EvaluationConfig GoogleCloud Datalabeling V1beta1Evaluation Config 
- Details for calculating evaluation metrics and creating Evaulations. If your model version performs image object detection, you must specify the boundingBoxEvaluationOptionsfield within this configuration. Otherwise, provide an empty object for this configuration.
- ExampleCount int
- The maximum number of predictions to sample and save to BigQuery during each evaluation interval. This limit overrides example_sample_percentage: even if the service has not sampled enough predictions to fulfillexample_sample_perecentageduring an interval, it stops sampling predictions when it meets this limit.
- ExampleSample float64Percentage 
- Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
- BoundingPoly GoogleConfig Cloud Datalabeling V1beta1Bounding Poly Config 
- Specify this field if your model version performs image object detection (bounding box detection). annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.
- EvaluationJob GoogleAlert Config Cloud Datalabeling V1beta1Evaluation Job Alert Config 
- Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
- HumanAnnotation GoogleConfig Cloud Datalabeling V1beta1Human Annotation Config 
- Optional. Details for human annotation of your data. If you set labelMissingGroundTruth to truefor this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an Instruction resource before you can specify this field. Provide the name of the instruction resource in theinstructionfield within this configuration.
- ImageClassification GoogleConfig Cloud Datalabeling V1beta1Image Classification Config 
- Specify this field if your model version performs image classification or general classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- InputConfig GoogleCloud Datalabeling V1beta1Input Config 
- Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * dataTypemust be one ofIMAGE,TEXT, orGENERAL_DATA. *annotationTypemust be one ofIMAGE_CLASSIFICATION_ANNOTATION,TEXT_CLASSIFICATION_ANNOTATION,GENERAL_CLASSIFICATION_ANNOTATION, orIMAGE_BOUNDING_BOX_ANNOTATION(image object detection). * If your machine learning model performs classification, you must specifyclassificationMetadata.isMultiLabel. * You must specifybigquerySource(notgcsSource).
- TextClassification GoogleConfig Cloud Datalabeling V1beta1Text Classification Config 
- Specify this field if your model version performs text classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- bigqueryImport Map<String,String>Keys 
- Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * data_json_key: the data key for prediction input. You must provide either this key orreference_json_key. *reference_json_key: the data reference key for prediction input. You must provide either this key ordata_json_key. *label_json_key: the label key for prediction output. Required. *label_score_json_key: the score key for prediction output. Required. *bounding_box_json_key: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys.
- evaluationConfig GoogleCloud Datalabeling V1beta1Evaluation Config 
- Details for calculating evaluation metrics and creating Evaulations. If your model version performs image object detection, you must specify the boundingBoxEvaluationOptionsfield within this configuration. Otherwise, provide an empty object for this configuration.
- exampleCount Integer
- The maximum number of predictions to sample and save to BigQuery during each evaluation interval. This limit overrides example_sample_percentage: even if the service has not sampled enough predictions to fulfillexample_sample_perecentageduring an interval, it stops sampling predictions when it meets this limit.
- exampleSample DoublePercentage 
- Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
- boundingPoly GoogleConfig Cloud Datalabeling V1beta1Bounding Poly Config 
- Specify this field if your model version performs image object detection (bounding box detection). annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.
- evaluationJob GoogleAlert Config Cloud Datalabeling V1beta1Evaluation Job Alert Config 
- Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
- humanAnnotation GoogleConfig Cloud Datalabeling V1beta1Human Annotation Config 
- Optional. Details for human annotation of your data. If you set labelMissingGroundTruth to truefor this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an Instruction resource before you can specify this field. Provide the name of the instruction resource in theinstructionfield within this configuration.
- imageClassification GoogleConfig Cloud Datalabeling V1beta1Image Classification Config 
- Specify this field if your model version performs image classification or general classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- inputConfig GoogleCloud Datalabeling V1beta1Input Config 
- Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * dataTypemust be one ofIMAGE,TEXT, orGENERAL_DATA. *annotationTypemust be one ofIMAGE_CLASSIFICATION_ANNOTATION,TEXT_CLASSIFICATION_ANNOTATION,GENERAL_CLASSIFICATION_ANNOTATION, orIMAGE_BOUNDING_BOX_ANNOTATION(image object detection). * If your machine learning model performs classification, you must specifyclassificationMetadata.isMultiLabel. * You must specifybigquerySource(notgcsSource).
- textClassification GoogleConfig Cloud Datalabeling V1beta1Text Classification Config 
- Specify this field if your model version performs text classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- bigqueryImport {[key: string]: string}Keys 
- Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * data_json_key: the data key for prediction input. You must provide either this key orreference_json_key. *reference_json_key: the data reference key for prediction input. You must provide either this key ordata_json_key. *label_json_key: the label key for prediction output. Required. *label_score_json_key: the score key for prediction output. Required. *bounding_box_json_key: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys.
- evaluationConfig GoogleCloud Datalabeling V1beta1Evaluation Config 
- Details for calculating evaluation metrics and creating Evaulations. If your model version performs image object detection, you must specify the boundingBoxEvaluationOptionsfield within this configuration. Otherwise, provide an empty object for this configuration.
- exampleCount number
- The maximum number of predictions to sample and save to BigQuery during each evaluation interval. This limit overrides example_sample_percentage: even if the service has not sampled enough predictions to fulfillexample_sample_perecentageduring an interval, it stops sampling predictions when it meets this limit.
- exampleSample numberPercentage 
- Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
- boundingPoly GoogleConfig Cloud Datalabeling V1beta1Bounding Poly Config 
- Specify this field if your model version performs image object detection (bounding box detection). annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.
- evaluationJob GoogleAlert Config Cloud Datalabeling V1beta1Evaluation Job Alert Config 
- Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
- humanAnnotation GoogleConfig Cloud Datalabeling V1beta1Human Annotation Config 
- Optional. Details for human annotation of your data. If you set labelMissingGroundTruth to truefor this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an Instruction resource before you can specify this field. Provide the name of the instruction resource in theinstructionfield within this configuration.
- imageClassification GoogleConfig Cloud Datalabeling V1beta1Image Classification Config 
- Specify this field if your model version performs image classification or general classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- inputConfig GoogleCloud Datalabeling V1beta1Input Config 
- Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * dataTypemust be one ofIMAGE,TEXT, orGENERAL_DATA. *annotationTypemust be one ofIMAGE_CLASSIFICATION_ANNOTATION,TEXT_CLASSIFICATION_ANNOTATION,GENERAL_CLASSIFICATION_ANNOTATION, orIMAGE_BOUNDING_BOX_ANNOTATION(image object detection). * If your machine learning model performs classification, you must specifyclassificationMetadata.isMultiLabel. * You must specifybigquerySource(notgcsSource).
- textClassification GoogleConfig Cloud Datalabeling V1beta1Text Classification Config 
- Specify this field if your model version performs text classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- bigquery_import_ Mapping[str, str]keys 
- Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * data_json_key: the data key for prediction input. You must provide either this key orreference_json_key. *reference_json_key: the data reference key for prediction input. You must provide either this key ordata_json_key. *label_json_key: the label key for prediction output. Required. *label_score_json_key: the score key for prediction output. Required. *bounding_box_json_key: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys.
- evaluation_config GoogleCloud Datalabeling V1beta1Evaluation Config 
- Details for calculating evaluation metrics and creating Evaulations. If your model version performs image object detection, you must specify the boundingBoxEvaluationOptionsfield within this configuration. Otherwise, provide an empty object for this configuration.
- example_count int
- The maximum number of predictions to sample and save to BigQuery during each evaluation interval. This limit overrides example_sample_percentage: even if the service has not sampled enough predictions to fulfillexample_sample_perecentageduring an interval, it stops sampling predictions when it meets this limit.
- example_sample_ floatpercentage 
- Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
- bounding_poly_ Googleconfig Cloud Datalabeling V1beta1Bounding Poly Config 
- Specify this field if your model version performs image object detection (bounding box detection). annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.
- evaluation_job_ Googlealert_ config Cloud Datalabeling V1beta1Evaluation Job Alert Config 
- Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
- human_annotation_ Googleconfig Cloud Datalabeling V1beta1Human Annotation Config 
- Optional. Details for human annotation of your data. If you set labelMissingGroundTruth to truefor this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an Instruction resource before you can specify this field. Provide the name of the instruction resource in theinstructionfield within this configuration.
- image_classification_ Googleconfig Cloud Datalabeling V1beta1Image Classification Config 
- Specify this field if your model version performs image classification or general classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- input_config GoogleCloud Datalabeling V1beta1Input Config 
- Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * dataTypemust be one ofIMAGE,TEXT, orGENERAL_DATA. *annotationTypemust be one ofIMAGE_CLASSIFICATION_ANNOTATION,TEXT_CLASSIFICATION_ANNOTATION,GENERAL_CLASSIFICATION_ANNOTATION, orIMAGE_BOUNDING_BOX_ANNOTATION(image object detection). * If your machine learning model performs classification, you must specifyclassificationMetadata.isMultiLabel. * You must specifybigquerySource(notgcsSource).
- text_classification_ Googleconfig Cloud Datalabeling V1beta1Text Classification Config 
- Specify this field if your model version performs text classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- bigqueryImport Map<String>Keys 
- Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * data_json_key: the data key for prediction input. You must provide either this key orreference_json_key. *reference_json_key: the data reference key for prediction input. You must provide either this key ordata_json_key. *label_json_key: the label key for prediction output. Required. *label_score_json_key: the score key for prediction output. Required. *bounding_box_json_key: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys.
- evaluationConfig Property Map
- Details for calculating evaluation metrics and creating Evaulations. If your model version performs image object detection, you must specify the boundingBoxEvaluationOptionsfield within this configuration. Otherwise, provide an empty object for this configuration.
- exampleCount Number
- The maximum number of predictions to sample and save to BigQuery during each evaluation interval. This limit overrides example_sample_percentage: even if the service has not sampled enough predictions to fulfillexample_sample_perecentageduring an interval, it stops sampling predictions when it meets this limit.
- exampleSample NumberPercentage 
- Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
- boundingPoly Property MapConfig 
- Specify this field if your model version performs image object detection (bounding box detection). annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.
- evaluationJob Property MapAlert Config 
- Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
- humanAnnotation Property MapConfig 
- Optional. Details for human annotation of your data. If you set labelMissingGroundTruth to truefor this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an Instruction resource before you can specify this field. Provide the name of the instruction resource in theinstructionfield within this configuration.
- imageClassification Property MapConfig 
- Specify this field if your model version performs image classification or general classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- inputConfig Property Map
- Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * dataTypemust be one ofIMAGE,TEXT, orGENERAL_DATA. *annotationTypemust be one ofIMAGE_CLASSIFICATION_ANNOTATION,TEXT_CLASSIFICATION_ANNOTATION,GENERAL_CLASSIFICATION_ANNOTATION, orIMAGE_BOUNDING_BOX_ANNOTATION(image object detection). * If your machine learning model performs classification, you must specifyclassificationMetadata.isMultiLabel. * You must specifybigquerySource(notgcsSource).
- textClassification Property MapConfig 
- Specify this field if your model version performs text classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
GoogleCloudDatalabelingV1beta1EvaluationJobConfigResponse, GoogleCloudDatalabelingV1beta1EvaluationJobConfigResponseArgs              
- BigqueryImport Dictionary<string, string>Keys 
- Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * data_json_key: the data key for prediction input. You must provide either this key orreference_json_key. *reference_json_key: the data reference key for prediction input. You must provide either this key ordata_json_key. *label_json_key: the label key for prediction output. Required. *label_score_json_key: the score key for prediction output. Required. *bounding_box_json_key: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys.
- BoundingPoly Pulumi.Config Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Bounding Poly Config Response 
- Specify this field if your model version performs image object detection (bounding box detection). annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.
- EvaluationConfig Pulumi.Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Evaluation Config Response 
- Details for calculating evaluation metrics and creating Evaulations. If your model version performs image object detection, you must specify the boundingBoxEvaluationOptionsfield within this configuration. Otherwise, provide an empty object for this configuration.
- EvaluationJob Pulumi.Alert Config Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Evaluation Job Alert Config Response 
- Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
- ExampleCount int
- The maximum number of predictions to sample and save to BigQuery during each evaluation interval. This limit overrides example_sample_percentage: even if the service has not sampled enough predictions to fulfillexample_sample_perecentageduring an interval, it stops sampling predictions when it meets this limit.
- ExampleSample doublePercentage 
- Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
- HumanAnnotation Pulumi.Config Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Human Annotation Config Response 
- Optional. Details for human annotation of your data. If you set labelMissingGroundTruth to truefor this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an Instruction resource before you can specify this field. Provide the name of the instruction resource in theinstructionfield within this configuration.
- ImageClassification Pulumi.Config Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Image Classification Config Response 
- Specify this field if your model version performs image classification or general classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- InputConfig Pulumi.Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Input Config Response 
- Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * dataTypemust be one ofIMAGE,TEXT, orGENERAL_DATA. *annotationTypemust be one ofIMAGE_CLASSIFICATION_ANNOTATION,TEXT_CLASSIFICATION_ANNOTATION,GENERAL_CLASSIFICATION_ANNOTATION, orIMAGE_BOUNDING_BOX_ANNOTATION(image object detection). * If your machine learning model performs classification, you must specifyclassificationMetadata.isMultiLabel. * You must specifybigquerySource(notgcsSource).
- TextClassification Pulumi.Config Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Text Classification Config Response 
- Specify this field if your model version performs text classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- BigqueryImport map[string]stringKeys 
- Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * data_json_key: the data key for prediction input. You must provide either this key orreference_json_key. *reference_json_key: the data reference key for prediction input. You must provide either this key ordata_json_key. *label_json_key: the label key for prediction output. Required. *label_score_json_key: the score key for prediction output. Required. *bounding_box_json_key: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys.
- BoundingPoly GoogleConfig Cloud Datalabeling V1beta1Bounding Poly Config Response 
- Specify this field if your model version performs image object detection (bounding box detection). annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.
- EvaluationConfig GoogleCloud Datalabeling V1beta1Evaluation Config Response 
- Details for calculating evaluation metrics and creating Evaulations. If your model version performs image object detection, you must specify the boundingBoxEvaluationOptionsfield within this configuration. Otherwise, provide an empty object for this configuration.
- EvaluationJob GoogleAlert Config Cloud Datalabeling V1beta1Evaluation Job Alert Config Response 
- Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
- ExampleCount int
- The maximum number of predictions to sample and save to BigQuery during each evaluation interval. This limit overrides example_sample_percentage: even if the service has not sampled enough predictions to fulfillexample_sample_perecentageduring an interval, it stops sampling predictions when it meets this limit.
- ExampleSample float64Percentage 
- Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
- HumanAnnotation GoogleConfig Cloud Datalabeling V1beta1Human Annotation Config Response 
- Optional. Details for human annotation of your data. If you set labelMissingGroundTruth to truefor this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an Instruction resource before you can specify this field. Provide the name of the instruction resource in theinstructionfield within this configuration.
- ImageClassification GoogleConfig Cloud Datalabeling V1beta1Image Classification Config Response 
- Specify this field if your model version performs image classification or general classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- InputConfig GoogleCloud Datalabeling V1beta1Input Config Response 
- Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * dataTypemust be one ofIMAGE,TEXT, orGENERAL_DATA. *annotationTypemust be one ofIMAGE_CLASSIFICATION_ANNOTATION,TEXT_CLASSIFICATION_ANNOTATION,GENERAL_CLASSIFICATION_ANNOTATION, orIMAGE_BOUNDING_BOX_ANNOTATION(image object detection). * If your machine learning model performs classification, you must specifyclassificationMetadata.isMultiLabel. * You must specifybigquerySource(notgcsSource).
- TextClassification GoogleConfig Cloud Datalabeling V1beta1Text Classification Config Response 
- Specify this field if your model version performs text classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- bigqueryImport Map<String,String>Keys 
- Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * data_json_key: the data key for prediction input. You must provide either this key orreference_json_key. *reference_json_key: the data reference key for prediction input. You must provide either this key ordata_json_key. *label_json_key: the label key for prediction output. Required. *label_score_json_key: the score key for prediction output. Required. *bounding_box_json_key: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys.
- boundingPoly GoogleConfig Cloud Datalabeling V1beta1Bounding Poly Config Response 
- Specify this field if your model version performs image object detection (bounding box detection). annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.
- evaluationConfig GoogleCloud Datalabeling V1beta1Evaluation Config Response 
- Details for calculating evaluation metrics and creating Evaulations. If your model version performs image object detection, you must specify the boundingBoxEvaluationOptionsfield within this configuration. Otherwise, provide an empty object for this configuration.
- evaluationJob GoogleAlert Config Cloud Datalabeling V1beta1Evaluation Job Alert Config Response 
- Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
- exampleCount Integer
- The maximum number of predictions to sample and save to BigQuery during each evaluation interval. This limit overrides example_sample_percentage: even if the service has not sampled enough predictions to fulfillexample_sample_perecentageduring an interval, it stops sampling predictions when it meets this limit.
- exampleSample DoublePercentage 
- Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
- humanAnnotation GoogleConfig Cloud Datalabeling V1beta1Human Annotation Config Response 
- Optional. Details for human annotation of your data. If you set labelMissingGroundTruth to truefor this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an Instruction resource before you can specify this field. Provide the name of the instruction resource in theinstructionfield within this configuration.
- imageClassification GoogleConfig Cloud Datalabeling V1beta1Image Classification Config Response 
- Specify this field if your model version performs image classification or general classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- inputConfig GoogleCloud Datalabeling V1beta1Input Config Response 
- Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * dataTypemust be one ofIMAGE,TEXT, orGENERAL_DATA. *annotationTypemust be one ofIMAGE_CLASSIFICATION_ANNOTATION,TEXT_CLASSIFICATION_ANNOTATION,GENERAL_CLASSIFICATION_ANNOTATION, orIMAGE_BOUNDING_BOX_ANNOTATION(image object detection). * If your machine learning model performs classification, you must specifyclassificationMetadata.isMultiLabel. * You must specifybigquerySource(notgcsSource).
- textClassification GoogleConfig Cloud Datalabeling V1beta1Text Classification Config Response 
- Specify this field if your model version performs text classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- bigqueryImport {[key: string]: string}Keys 
- Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * data_json_key: the data key for prediction input. You must provide either this key orreference_json_key. *reference_json_key: the data reference key for prediction input. You must provide either this key ordata_json_key. *label_json_key: the label key for prediction output. Required. *label_score_json_key: the score key for prediction output. Required. *bounding_box_json_key: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys.
- boundingPoly GoogleConfig Cloud Datalabeling V1beta1Bounding Poly Config Response 
- Specify this field if your model version performs image object detection (bounding box detection). annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.
- evaluationConfig GoogleCloud Datalabeling V1beta1Evaluation Config Response 
- Details for calculating evaluation metrics and creating Evaulations. If your model version performs image object detection, you must specify the boundingBoxEvaluationOptionsfield within this configuration. Otherwise, provide an empty object for this configuration.
- evaluationJob GoogleAlert Config Cloud Datalabeling V1beta1Evaluation Job Alert Config Response 
- Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
- exampleCount number
- The maximum number of predictions to sample and save to BigQuery during each evaluation interval. This limit overrides example_sample_percentage: even if the service has not sampled enough predictions to fulfillexample_sample_perecentageduring an interval, it stops sampling predictions when it meets this limit.
- exampleSample numberPercentage 
- Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
- humanAnnotation GoogleConfig Cloud Datalabeling V1beta1Human Annotation Config Response 
- Optional. Details for human annotation of your data. If you set labelMissingGroundTruth to truefor this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an Instruction resource before you can specify this field. Provide the name of the instruction resource in theinstructionfield within this configuration.
- imageClassification GoogleConfig Cloud Datalabeling V1beta1Image Classification Config Response 
- Specify this field if your model version performs image classification or general classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- inputConfig GoogleCloud Datalabeling V1beta1Input Config Response 
- Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * dataTypemust be one ofIMAGE,TEXT, orGENERAL_DATA. *annotationTypemust be one ofIMAGE_CLASSIFICATION_ANNOTATION,TEXT_CLASSIFICATION_ANNOTATION,GENERAL_CLASSIFICATION_ANNOTATION, orIMAGE_BOUNDING_BOX_ANNOTATION(image object detection). * If your machine learning model performs classification, you must specifyclassificationMetadata.isMultiLabel. * You must specifybigquerySource(notgcsSource).
- textClassification GoogleConfig Cloud Datalabeling V1beta1Text Classification Config Response 
- Specify this field if your model version performs text classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- bigquery_import_ Mapping[str, str]keys 
- Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * data_json_key: the data key for prediction input. You must provide either this key orreference_json_key. *reference_json_key: the data reference key for prediction input. You must provide either this key ordata_json_key. *label_json_key: the label key for prediction output. Required. *label_score_json_key: the score key for prediction output. Required. *bounding_box_json_key: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys.
- bounding_poly_ Googleconfig Cloud Datalabeling V1beta1Bounding Poly Config Response 
- Specify this field if your model version performs image object detection (bounding box detection). annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.
- evaluation_config GoogleCloud Datalabeling V1beta1Evaluation Config Response 
- Details for calculating evaluation metrics and creating Evaulations. If your model version performs image object detection, you must specify the boundingBoxEvaluationOptionsfield within this configuration. Otherwise, provide an empty object for this configuration.
- evaluation_job_ Googlealert_ config Cloud Datalabeling V1beta1Evaluation Job Alert Config Response 
- Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
- example_count int
- The maximum number of predictions to sample and save to BigQuery during each evaluation interval. This limit overrides example_sample_percentage: even if the service has not sampled enough predictions to fulfillexample_sample_perecentageduring an interval, it stops sampling predictions when it meets this limit.
- example_sample_ floatpercentage 
- Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
- human_annotation_ Googleconfig Cloud Datalabeling V1beta1Human Annotation Config Response 
- Optional. Details for human annotation of your data. If you set labelMissingGroundTruth to truefor this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an Instruction resource before you can specify this field. Provide the name of the instruction resource in theinstructionfield within this configuration.
- image_classification_ Googleconfig Cloud Datalabeling V1beta1Image Classification Config Response 
- Specify this field if your model version performs image classification or general classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- input_config GoogleCloud Datalabeling V1beta1Input Config Response 
- Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * dataTypemust be one ofIMAGE,TEXT, orGENERAL_DATA. *annotationTypemust be one ofIMAGE_CLASSIFICATION_ANNOTATION,TEXT_CLASSIFICATION_ANNOTATION,GENERAL_CLASSIFICATION_ANNOTATION, orIMAGE_BOUNDING_BOX_ANNOTATION(image object detection). * If your machine learning model performs classification, you must specifyclassificationMetadata.isMultiLabel. * You must specifybigquerySource(notgcsSource).
- text_classification_ Googleconfig Cloud Datalabeling V1beta1Text Classification Config Response 
- Specify this field if your model version performs text classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- bigqueryImport Map<String>Keys 
- Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * data_json_key: the data key for prediction input. You must provide either this key orreference_json_key. *reference_json_key: the data reference key for prediction input. You must provide either this key ordata_json_key. *label_json_key: the label key for prediction output. Required. *label_score_json_key: the score key for prediction output. Required. *bounding_box_json_key: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys.
- boundingPoly Property MapConfig 
- Specify this field if your model version performs image object detection (bounding box detection). annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.
- evaluationConfig Property Map
- Details for calculating evaluation metrics and creating Evaulations. If your model version performs image object detection, you must specify the boundingBoxEvaluationOptionsfield within this configuration. Otherwise, provide an empty object for this configuration.
- evaluationJob Property MapAlert Config 
- Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
- exampleCount Number
- The maximum number of predictions to sample and save to BigQuery during each evaluation interval. This limit overrides example_sample_percentage: even if the service has not sampled enough predictions to fulfillexample_sample_perecentageduring an interval, it stops sampling predictions when it meets this limit.
- exampleSample NumberPercentage 
- Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
- humanAnnotation Property MapConfig 
- Optional. Details for human annotation of your data. If you set labelMissingGroundTruth to truefor this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an Instruction resource before you can specify this field. Provide the name of the instruction resource in theinstructionfield within this configuration.
- imageClassification Property MapConfig 
- Specify this field if your model version performs image classification or general classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
- inputConfig Property Map
- Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * dataTypemust be one ofIMAGE,TEXT, orGENERAL_DATA. *annotationTypemust be one ofIMAGE_CLASSIFICATION_ANNOTATION,TEXT_CLASSIFICATION_ANNOTATION,GENERAL_CLASSIFICATION_ANNOTATION, orIMAGE_BOUNDING_BOX_ANNOTATION(image object detection). * If your machine learning model performs classification, you must specifyclassificationMetadata.isMultiLabel. * You must specifybigquerySource(notgcsSource).
- textClassification Property MapConfig 
- Specify this field if your model version performs text classification. annotationSpecSetin this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabelin this configuration must matchclassificationMetadata.isMultiLabelin input_config.
GoogleCloudDatalabelingV1beta1GcsSource, GoogleCloudDatalabelingV1beta1GcsSourceArgs          
GoogleCloudDatalabelingV1beta1GcsSourceResponse, GoogleCloudDatalabelingV1beta1GcsSourceResponseArgs            
GoogleCloudDatalabelingV1beta1HumanAnnotationConfig, GoogleCloudDatalabelingV1beta1HumanAnnotationConfigArgs            
- AnnotatedDataset stringDisplay Name 
- A human-readable name for AnnotatedDataset defined by users. Maximum of 64 characters .
- Instruction string
- Instruction resource name.
- AnnotatedDataset stringDescription 
- Optional. A human-readable description for AnnotatedDataset. The description can be up to 10000 characters long.
- ContributorEmails List<string>
- Optional. If you want your own labeling contributors to manage and work on this labeling request, you can set these contributors here. We will give them access to the question types in crowdcompute. Note that these emails must be registered in crowdcompute worker UI: https://crowd-compute.appspot.com/
- LabelGroup string
- Optional. A human-readable label used to logically group labeling tasks. This string must match the regular expression [a-zA-Z\\d_-]{0,128}.
- LanguageCode string
- Optional. The Language of this question, as a BCP-47. Default value is en-US. Only need to set this when task is language related. For example, French text classification.
- QuestionDuration string
- Optional. Maximum duration for contributors to answer a question. Maximum is 3600 seconds. Default is 3600 seconds.
- ReplicaCount int
- Optional. Replication of questions. Each question will be sent to up to this number of contributors to label. Aggregated answers will be returned. Default is set to 1. For image related labeling, valid values are 1, 3, 5.
- UserEmail stringAddress 
- Email of the user who started the labeling task and should be notified by email. If empty no notification will be sent.
- AnnotatedDataset stringDisplay Name 
- A human-readable name for AnnotatedDataset defined by users. Maximum of 64 characters .
- Instruction string
- Instruction resource name.
- AnnotatedDataset stringDescription 
- Optional. A human-readable description for AnnotatedDataset. The description can be up to 10000 characters long.
- ContributorEmails []string
- Optional. If you want your own labeling contributors to manage and work on this labeling request, you can set these contributors here. We will give them access to the question types in crowdcompute. Note that these emails must be registered in crowdcompute worker UI: https://crowd-compute.appspot.com/
- LabelGroup string
- Optional. A human-readable label used to logically group labeling tasks. This string must match the regular expression [a-zA-Z\\d_-]{0,128}.
- LanguageCode string
- Optional. The Language of this question, as a BCP-47. Default value is en-US. Only need to set this when task is language related. For example, French text classification.
- QuestionDuration string
- Optional. Maximum duration for contributors to answer a question. Maximum is 3600 seconds. Default is 3600 seconds.
- ReplicaCount int
- Optional. Replication of questions. Each question will be sent to up to this number of contributors to label. Aggregated answers will be returned. Default is set to 1. For image related labeling, valid values are 1, 3, 5.
- UserEmail stringAddress 
- Email of the user who started the labeling task and should be notified by email. If empty no notification will be sent.
- annotatedDataset StringDisplay Name 
- A human-readable name for AnnotatedDataset defined by users. Maximum of 64 characters .
- instruction String
- Instruction resource name.
- annotatedDataset StringDescription 
- Optional. A human-readable description for AnnotatedDataset. The description can be up to 10000 characters long.
- contributorEmails List<String>
- Optional. If you want your own labeling contributors to manage and work on this labeling request, you can set these contributors here. We will give them access to the question types in crowdcompute. Note that these emails must be registered in crowdcompute worker UI: https://crowd-compute.appspot.com/
- labelGroup String
- Optional. A human-readable label used to logically group labeling tasks. This string must match the regular expression [a-zA-Z\\d_-]{0,128}.
- languageCode String
- Optional. The Language of this question, as a BCP-47. Default value is en-US. Only need to set this when task is language related. For example, French text classification.
- questionDuration String
- Optional. Maximum duration for contributors to answer a question. Maximum is 3600 seconds. Default is 3600 seconds.
- replicaCount Integer
- Optional. Replication of questions. Each question will be sent to up to this number of contributors to label. Aggregated answers will be returned. Default is set to 1. For image related labeling, valid values are 1, 3, 5.
- userEmail StringAddress 
- Email of the user who started the labeling task and should be notified by email. If empty no notification will be sent.
- annotatedDataset stringDisplay Name 
- A human-readable name for AnnotatedDataset defined by users. Maximum of 64 characters .
- instruction string
- Instruction resource name.
- annotatedDataset stringDescription 
- Optional. A human-readable description for AnnotatedDataset. The description can be up to 10000 characters long.
- contributorEmails string[]
- Optional. If you want your own labeling contributors to manage and work on this labeling request, you can set these contributors here. We will give them access to the question types in crowdcompute. Note that these emails must be registered in crowdcompute worker UI: https://crowd-compute.appspot.com/
- labelGroup string
- Optional. A human-readable label used to logically group labeling tasks. This string must match the regular expression [a-zA-Z\\d_-]{0,128}.
- languageCode string
- Optional. The Language of this question, as a BCP-47. Default value is en-US. Only need to set this when task is language related. For example, French text classification.
- questionDuration string
- Optional. Maximum duration for contributors to answer a question. Maximum is 3600 seconds. Default is 3600 seconds.
- replicaCount number
- Optional. Replication of questions. Each question will be sent to up to this number of contributors to label. Aggregated answers will be returned. Default is set to 1. For image related labeling, valid values are 1, 3, 5.
- userEmail stringAddress 
- Email of the user who started the labeling task and should be notified by email. If empty no notification will be sent.
- annotated_dataset_ strdisplay_ name 
- A human-readable name for AnnotatedDataset defined by users. Maximum of 64 characters .
- instruction str
- Instruction resource name.
- annotated_dataset_ strdescription 
- Optional. A human-readable description for AnnotatedDataset. The description can be up to 10000 characters long.
- contributor_emails Sequence[str]
- Optional. If you want your own labeling contributors to manage and work on this labeling request, you can set these contributors here. We will give them access to the question types in crowdcompute. Note that these emails must be registered in crowdcompute worker UI: https://crowd-compute.appspot.com/
- label_group str
- Optional. A human-readable label used to logically group labeling tasks. This string must match the regular expression [a-zA-Z\\d_-]{0,128}.
- language_code str
- Optional. The Language of this question, as a BCP-47. Default value is en-US. Only need to set this when task is language related. For example, French text classification.
- question_duration str
- Optional. Maximum duration for contributors to answer a question. Maximum is 3600 seconds. Default is 3600 seconds.
- replica_count int
- Optional. Replication of questions. Each question will be sent to up to this number of contributors to label. Aggregated answers will be returned. Default is set to 1. For image related labeling, valid values are 1, 3, 5.
- user_email_ straddress 
- Email of the user who started the labeling task and should be notified by email. If empty no notification will be sent.
- annotatedDataset StringDisplay Name 
- A human-readable name for AnnotatedDataset defined by users. Maximum of 64 characters .
- instruction String
- Instruction resource name.
- annotatedDataset StringDescription 
- Optional. A human-readable description for AnnotatedDataset. The description can be up to 10000 characters long.
- contributorEmails List<String>
- Optional. If you want your own labeling contributors to manage and work on this labeling request, you can set these contributors here. We will give them access to the question types in crowdcompute. Note that these emails must be registered in crowdcompute worker UI: https://crowd-compute.appspot.com/
- labelGroup String
- Optional. A human-readable label used to logically group labeling tasks. This string must match the regular expression [a-zA-Z\\d_-]{0,128}.
- languageCode String
- Optional. The Language of this question, as a BCP-47. Default value is en-US. Only need to set this when task is language related. For example, French text classification.
- questionDuration String
- Optional. Maximum duration for contributors to answer a question. Maximum is 3600 seconds. Default is 3600 seconds.
- replicaCount Number
- Optional. Replication of questions. Each question will be sent to up to this number of contributors to label. Aggregated answers will be returned. Default is set to 1. For image related labeling, valid values are 1, 3, 5.
- userEmail StringAddress 
- Email of the user who started the labeling task and should be notified by email. If empty no notification will be sent.
GoogleCloudDatalabelingV1beta1HumanAnnotationConfigResponse, GoogleCloudDatalabelingV1beta1HumanAnnotationConfigResponseArgs              
- AnnotatedDataset stringDescription 
- Optional. A human-readable description for AnnotatedDataset. The description can be up to 10000 characters long.
- AnnotatedDataset stringDisplay Name 
- A human-readable name for AnnotatedDataset defined by users. Maximum of 64 characters .
- ContributorEmails List<string>
- Optional. If you want your own labeling contributors to manage and work on this labeling request, you can set these contributors here. We will give them access to the question types in crowdcompute. Note that these emails must be registered in crowdcompute worker UI: https://crowd-compute.appspot.com/
- Instruction string
- Instruction resource name.
- LabelGroup string
- Optional. A human-readable label used to logically group labeling tasks. This string must match the regular expression [a-zA-Z\\d_-]{0,128}.
- LanguageCode string
- Optional. The Language of this question, as a BCP-47. Default value is en-US. Only need to set this when task is language related. For example, French text classification.
- QuestionDuration string
- Optional. Maximum duration for contributors to answer a question. Maximum is 3600 seconds. Default is 3600 seconds.
- ReplicaCount int
- Optional. Replication of questions. Each question will be sent to up to this number of contributors to label. Aggregated answers will be returned. Default is set to 1. For image related labeling, valid values are 1, 3, 5.
- UserEmail stringAddress 
- Email of the user who started the labeling task and should be notified by email. If empty no notification will be sent.
- AnnotatedDataset stringDescription 
- Optional. A human-readable description for AnnotatedDataset. The description can be up to 10000 characters long.
- AnnotatedDataset stringDisplay Name 
- A human-readable name for AnnotatedDataset defined by users. Maximum of 64 characters .
- ContributorEmails []string
- Optional. If you want your own labeling contributors to manage and work on this labeling request, you can set these contributors here. We will give them access to the question types in crowdcompute. Note that these emails must be registered in crowdcompute worker UI: https://crowd-compute.appspot.com/
- Instruction string
- Instruction resource name.
- LabelGroup string
- Optional. A human-readable label used to logically group labeling tasks. This string must match the regular expression [a-zA-Z\\d_-]{0,128}.
- LanguageCode string
- Optional. The Language of this question, as a BCP-47. Default value is en-US. Only need to set this when task is language related. For example, French text classification.
- QuestionDuration string
- Optional. Maximum duration for contributors to answer a question. Maximum is 3600 seconds. Default is 3600 seconds.
- ReplicaCount int
- Optional. Replication of questions. Each question will be sent to up to this number of contributors to label. Aggregated answers will be returned. Default is set to 1. For image related labeling, valid values are 1, 3, 5.
- UserEmail stringAddress 
- Email of the user who started the labeling task and should be notified by email. If empty no notification will be sent.
- annotatedDataset StringDescription 
- Optional. A human-readable description for AnnotatedDataset. The description can be up to 10000 characters long.
- annotatedDataset StringDisplay Name 
- A human-readable name for AnnotatedDataset defined by users. Maximum of 64 characters .
- contributorEmails List<String>
- Optional. If you want your own labeling contributors to manage and work on this labeling request, you can set these contributors here. We will give them access to the question types in crowdcompute. Note that these emails must be registered in crowdcompute worker UI: https://crowd-compute.appspot.com/
- instruction String
- Instruction resource name.
- labelGroup String
- Optional. A human-readable label used to logically group labeling tasks. This string must match the regular expression [a-zA-Z\\d_-]{0,128}.
- languageCode String
- Optional. The Language of this question, as a BCP-47. Default value is en-US. Only need to set this when task is language related. For example, French text classification.
- questionDuration String
- Optional. Maximum duration for contributors to answer a question. Maximum is 3600 seconds. Default is 3600 seconds.
- replicaCount Integer
- Optional. Replication of questions. Each question will be sent to up to this number of contributors to label. Aggregated answers will be returned. Default is set to 1. For image related labeling, valid values are 1, 3, 5.
- userEmail StringAddress 
- Email of the user who started the labeling task and should be notified by email. If empty no notification will be sent.
- annotatedDataset stringDescription 
- Optional. A human-readable description for AnnotatedDataset. The description can be up to 10000 characters long.
- annotatedDataset stringDisplay Name 
- A human-readable name for AnnotatedDataset defined by users. Maximum of 64 characters .
- contributorEmails string[]
- Optional. If you want your own labeling contributors to manage and work on this labeling request, you can set these contributors here. We will give them access to the question types in crowdcompute. Note that these emails must be registered in crowdcompute worker UI: https://crowd-compute.appspot.com/
- instruction string
- Instruction resource name.
- labelGroup string
- Optional. A human-readable label used to logically group labeling tasks. This string must match the regular expression [a-zA-Z\\d_-]{0,128}.
- languageCode string
- Optional. The Language of this question, as a BCP-47. Default value is en-US. Only need to set this when task is language related. For example, French text classification.
- questionDuration string
- Optional. Maximum duration for contributors to answer a question. Maximum is 3600 seconds. Default is 3600 seconds.
- replicaCount number
- Optional. Replication of questions. Each question will be sent to up to this number of contributors to label. Aggregated answers will be returned. Default is set to 1. For image related labeling, valid values are 1, 3, 5.
- userEmail stringAddress 
- Email of the user who started the labeling task and should be notified by email. If empty no notification will be sent.
- annotated_dataset_ strdescription 
- Optional. A human-readable description for AnnotatedDataset. The description can be up to 10000 characters long.
- annotated_dataset_ strdisplay_ name 
- A human-readable name for AnnotatedDataset defined by users. Maximum of 64 characters .
- contributor_emails Sequence[str]
- Optional. If you want your own labeling contributors to manage and work on this labeling request, you can set these contributors here. We will give them access to the question types in crowdcompute. Note that these emails must be registered in crowdcompute worker UI: https://crowd-compute.appspot.com/
- instruction str
- Instruction resource name.
- label_group str
- Optional. A human-readable label used to logically group labeling tasks. This string must match the regular expression [a-zA-Z\\d_-]{0,128}.
- language_code str
- Optional. The Language of this question, as a BCP-47. Default value is en-US. Only need to set this when task is language related. For example, French text classification.
- question_duration str
- Optional. Maximum duration for contributors to answer a question. Maximum is 3600 seconds. Default is 3600 seconds.
- replica_count int
- Optional. Replication of questions. Each question will be sent to up to this number of contributors to label. Aggregated answers will be returned. Default is set to 1. For image related labeling, valid values are 1, 3, 5.
- user_email_ straddress 
- Email of the user who started the labeling task and should be notified by email. If empty no notification will be sent.
- annotatedDataset StringDescription 
- Optional. A human-readable description for AnnotatedDataset. The description can be up to 10000 characters long.
- annotatedDataset StringDisplay Name 
- A human-readable name for AnnotatedDataset defined by users. Maximum of 64 characters .
- contributorEmails List<String>
- Optional. If you want your own labeling contributors to manage and work on this labeling request, you can set these contributors here. We will give them access to the question types in crowdcompute. Note that these emails must be registered in crowdcompute worker UI: https://crowd-compute.appspot.com/
- instruction String
- Instruction resource name.
- labelGroup String
- Optional. A human-readable label used to logically group labeling tasks. This string must match the regular expression [a-zA-Z\\d_-]{0,128}.
- languageCode String
- Optional. The Language of this question, as a BCP-47. Default value is en-US. Only need to set this when task is language related. For example, French text classification.
- questionDuration String
- Optional. Maximum duration for contributors to answer a question. Maximum is 3600 seconds. Default is 3600 seconds.
- replicaCount Number
- Optional. Replication of questions. Each question will be sent to up to this number of contributors to label. Aggregated answers will be returned. Default is set to 1. For image related labeling, valid values are 1, 3, 5.
- userEmail StringAddress 
- Email of the user who started the labeling task and should be notified by email. If empty no notification will be sent.
GoogleCloudDatalabelingV1beta1ImageClassificationConfig, GoogleCloudDatalabelingV1beta1ImageClassificationConfigArgs            
- AnnotationSpec stringSet 
- Annotation spec set resource name.
- AllowMulti boolLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one image.
- AnswerAggregation Pulumi.Type Google Native. Data Labeling. V1Beta1. Google Cloud Datalabeling V1beta1Image Classification Config Answer Aggregation Type 
- Optional. The type of how to aggregate answers.
- AnnotationSpec stringSet 
- Annotation spec set resource name.
- AllowMulti boolLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one image.
- AnswerAggregation GoogleType Cloud Datalabeling V1beta1Image Classification Config Answer Aggregation Type 
- Optional. The type of how to aggregate answers.
- annotationSpec StringSet 
- Annotation spec set resource name.
- allowMulti BooleanLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one image.
- answerAggregation GoogleType Cloud Datalabeling V1beta1Image Classification Config Answer Aggregation Type 
- Optional. The type of how to aggregate answers.
- annotationSpec stringSet 
- Annotation spec set resource name.
- allowMulti booleanLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one image.
- answerAggregation GoogleType Cloud Datalabeling V1beta1Image Classification Config Answer Aggregation Type 
- Optional. The type of how to aggregate answers.
- annotation_spec_ strset 
- Annotation spec set resource name.
- allow_multi_ boollabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one image.
- answer_aggregation_ Googletype Cloud Datalabeling V1beta1Image Classification Config Answer Aggregation Type 
- Optional. The type of how to aggregate answers.
- annotationSpec StringSet 
- Annotation spec set resource name.
- allowMulti BooleanLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one image.
- answerAggregation "STRING_AGGREGATION_TYPE_UNSPECIFIED" | "MAJORITY_VOTE" | "UNANIMOUS_VOTE" | "NO_AGGREGATION"Type 
- Optional. The type of how to aggregate answers.
GoogleCloudDatalabelingV1beta1ImageClassificationConfigAnswerAggregationType, GoogleCloudDatalabelingV1beta1ImageClassificationConfigAnswerAggregationTypeArgs                  
- StringAggregation Type Unspecified 
- STRING_AGGREGATION_TYPE_UNSPECIFIED
- MajorityVote 
- MAJORITY_VOTEMajority vote to aggregate answers.
- UnanimousVote 
- UNANIMOUS_VOTEUnanimous answers will be adopted.
- NoAggregation 
- NO_AGGREGATIONPreserve all answers by crowd compute.
- GoogleCloud Datalabeling V1beta1Image Classification Config Answer Aggregation Type String Aggregation Type Unspecified 
- STRING_AGGREGATION_TYPE_UNSPECIFIED
- GoogleCloud Datalabeling V1beta1Image Classification Config Answer Aggregation Type Majority Vote 
- MAJORITY_VOTEMajority vote to aggregate answers.
- GoogleCloud Datalabeling V1beta1Image Classification Config Answer Aggregation Type Unanimous Vote 
- UNANIMOUS_VOTEUnanimous answers will be adopted.
- GoogleCloud Datalabeling V1beta1Image Classification Config Answer Aggregation Type No Aggregation 
- NO_AGGREGATIONPreserve all answers by crowd compute.
- StringAggregation Type Unspecified 
- STRING_AGGREGATION_TYPE_UNSPECIFIED
- MajorityVote 
- MAJORITY_VOTEMajority vote to aggregate answers.
- UnanimousVote 
- UNANIMOUS_VOTEUnanimous answers will be adopted.
- NoAggregation 
- NO_AGGREGATIONPreserve all answers by crowd compute.
- StringAggregation Type Unspecified 
- STRING_AGGREGATION_TYPE_UNSPECIFIED
- MajorityVote 
- MAJORITY_VOTEMajority vote to aggregate answers.
- UnanimousVote 
- UNANIMOUS_VOTEUnanimous answers will be adopted.
- NoAggregation 
- NO_AGGREGATIONPreserve all answers by crowd compute.
- STRING_AGGREGATION_TYPE_UNSPECIFIED
- STRING_AGGREGATION_TYPE_UNSPECIFIED
- MAJORITY_VOTE
- MAJORITY_VOTEMajority vote to aggregate answers.
- UNANIMOUS_VOTE
- UNANIMOUS_VOTEUnanimous answers will be adopted.
- NO_AGGREGATION
- NO_AGGREGATIONPreserve all answers by crowd compute.
- "STRING_AGGREGATION_TYPE_UNSPECIFIED"
- STRING_AGGREGATION_TYPE_UNSPECIFIED
- "MAJORITY_VOTE"
- MAJORITY_VOTEMajority vote to aggregate answers.
- "UNANIMOUS_VOTE"
- UNANIMOUS_VOTEUnanimous answers will be adopted.
- "NO_AGGREGATION"
- NO_AGGREGATIONPreserve all answers by crowd compute.
GoogleCloudDatalabelingV1beta1ImageClassificationConfigResponse, GoogleCloudDatalabelingV1beta1ImageClassificationConfigResponseArgs              
- AllowMulti boolLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one image.
- AnnotationSpec stringSet 
- Annotation spec set resource name.
- AnswerAggregation stringType 
- Optional. The type of how to aggregate answers.
- AllowMulti boolLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one image.
- AnnotationSpec stringSet 
- Annotation spec set resource name.
- AnswerAggregation stringType 
- Optional. The type of how to aggregate answers.
- allowMulti BooleanLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one image.
- annotationSpec StringSet 
- Annotation spec set resource name.
- answerAggregation StringType 
- Optional. The type of how to aggregate answers.
- allowMulti booleanLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one image.
- annotationSpec stringSet 
- Annotation spec set resource name.
- answerAggregation stringType 
- Optional. The type of how to aggregate answers.
- allow_multi_ boollabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one image.
- annotation_spec_ strset 
- Annotation spec set resource name.
- answer_aggregation_ strtype 
- Optional. The type of how to aggregate answers.
- allowMulti BooleanLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one image.
- annotationSpec StringSet 
- Annotation spec set resource name.
- answerAggregation StringType 
- Optional. The type of how to aggregate answers.
GoogleCloudDatalabelingV1beta1InputConfig, GoogleCloudDatalabelingV1beta1InputConfigArgs          
- DataType Pulumi.Google Native. Data Labeling. V1Beta1. Google Cloud Datalabeling V1beta1Input Config Data Type 
- Data type must be specifed when user tries to import data.
- AnnotationType Pulumi.Google Native. Data Labeling. V1Beta1. Google Cloud Datalabeling V1beta1Input Config Annotation Type 
- Optional. The type of annotation to be performed on this data. You must specify this field if you are using this InputConfig in an EvaluationJob.
- BigquerySource Pulumi.Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Big Query Source 
- Source located in BigQuery. You must specify this field if you are using this InputConfig in an EvaluationJob.
- ClassificationMetadata Pulumi.Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Classification Metadata 
- Optional. Metadata about annotations for the input. You must specify this field if you are using this InputConfig in an EvaluationJob for a model version that performs classification.
- GcsSource Pulumi.Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Gcs Source 
- Source located in Cloud Storage.
- TextMetadata Pulumi.Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Text Metadata 
- Required for text import, as language code must be specified.
- DataType GoogleCloud Datalabeling V1beta1Input Config Data Type 
- Data type must be specifed when user tries to import data.
- AnnotationType GoogleCloud Datalabeling V1beta1Input Config Annotation Type 
- Optional. The type of annotation to be performed on this data. You must specify this field if you are using this InputConfig in an EvaluationJob.
- BigquerySource GoogleCloud Datalabeling V1beta1Big Query Source 
- Source located in BigQuery. You must specify this field if you are using this InputConfig in an EvaluationJob.
- ClassificationMetadata GoogleCloud Datalabeling V1beta1Classification Metadata 
- Optional. Metadata about annotations for the input. You must specify this field if you are using this InputConfig in an EvaluationJob for a model version that performs classification.
- GcsSource GoogleCloud Datalabeling V1beta1Gcs Source 
- Source located in Cloud Storage.
- TextMetadata GoogleCloud Datalabeling V1beta1Text Metadata 
- Required for text import, as language code must be specified.
- dataType GoogleCloud Datalabeling V1beta1Input Config Data Type 
- Data type must be specifed when user tries to import data.
- annotationType GoogleCloud Datalabeling V1beta1Input Config Annotation Type 
- Optional. The type of annotation to be performed on this data. You must specify this field if you are using this InputConfig in an EvaluationJob.
- bigquerySource GoogleCloud Datalabeling V1beta1Big Query Source 
- Source located in BigQuery. You must specify this field if you are using this InputConfig in an EvaluationJob.
- classificationMetadata GoogleCloud Datalabeling V1beta1Classification Metadata 
- Optional. Metadata about annotations for the input. You must specify this field if you are using this InputConfig in an EvaluationJob for a model version that performs classification.
- gcsSource GoogleCloud Datalabeling V1beta1Gcs Source 
- Source located in Cloud Storage.
- textMetadata GoogleCloud Datalabeling V1beta1Text Metadata 
- Required for text import, as language code must be specified.
- dataType GoogleCloud Datalabeling V1beta1Input Config Data Type 
- Data type must be specifed when user tries to import data.
- annotationType GoogleCloud Datalabeling V1beta1Input Config Annotation Type 
- Optional. The type of annotation to be performed on this data. You must specify this field if you are using this InputConfig in an EvaluationJob.
- bigquerySource GoogleCloud Datalabeling V1beta1Big Query Source 
- Source located in BigQuery. You must specify this field if you are using this InputConfig in an EvaluationJob.
- classificationMetadata GoogleCloud Datalabeling V1beta1Classification Metadata 
- Optional. Metadata about annotations for the input. You must specify this field if you are using this InputConfig in an EvaluationJob for a model version that performs classification.
- gcsSource GoogleCloud Datalabeling V1beta1Gcs Source 
- Source located in Cloud Storage.
- textMetadata GoogleCloud Datalabeling V1beta1Text Metadata 
- Required for text import, as language code must be specified.
- data_type GoogleCloud Datalabeling V1beta1Input Config Data Type 
- Data type must be specifed when user tries to import data.
- annotation_type GoogleCloud Datalabeling V1beta1Input Config Annotation Type 
- Optional. The type of annotation to be performed on this data. You must specify this field if you are using this InputConfig in an EvaluationJob.
- bigquery_source GoogleCloud Datalabeling V1beta1Big Query Source 
- Source located in BigQuery. You must specify this field if you are using this InputConfig in an EvaluationJob.
- classification_metadata GoogleCloud Datalabeling V1beta1Classification Metadata 
- Optional. Metadata about annotations for the input. You must specify this field if you are using this InputConfig in an EvaluationJob for a model version that performs classification.
- gcs_source GoogleCloud Datalabeling V1beta1Gcs Source 
- Source located in Cloud Storage.
- text_metadata GoogleCloud Datalabeling V1beta1Text Metadata 
- Required for text import, as language code must be specified.
- dataType "DATA_TYPE_UNSPECIFIED" | "IMAGE" | "VIDEO" | "TEXT" | "GENERAL_DATA"
- Data type must be specifed when user tries to import data.
- annotationType "ANNOTATION_TYPE_UNSPECIFIED" | "IMAGE_CLASSIFICATION_ANNOTATION" | "IMAGE_BOUNDING_BOX_ANNOTATION" | "IMAGE_ORIENTED_BOUNDING_BOX_ANNOTATION" | "IMAGE_BOUNDING_POLY_ANNOTATION" | "IMAGE_POLYLINE_ANNOTATION" | "IMAGE_SEGMENTATION_ANNOTATION" | "VIDEO_SHOTS_CLASSIFICATION_ANNOTATION" | "VIDEO_OBJECT_TRACKING_ANNOTATION" | "VIDEO_OBJECT_DETECTION_ANNOTATION" | "VIDEO_EVENT_ANNOTATION" | "TEXT_CLASSIFICATION_ANNOTATION" | "TEXT_ENTITY_EXTRACTION_ANNOTATION" | "GENERAL_CLASSIFICATION_ANNOTATION"
- Optional. The type of annotation to be performed on this data. You must specify this field if you are using this InputConfig in an EvaluationJob.
- bigquerySource Property Map
- Source located in BigQuery. You must specify this field if you are using this InputConfig in an EvaluationJob.
- classificationMetadata Property Map
- Optional. Metadata about annotations for the input. You must specify this field if you are using this InputConfig in an EvaluationJob for a model version that performs classification.
- gcsSource Property Map
- Source located in Cloud Storage.
- textMetadata Property Map
- Required for text import, as language code must be specified.
GoogleCloudDatalabelingV1beta1InputConfigAnnotationType, GoogleCloudDatalabelingV1beta1InputConfigAnnotationTypeArgs              
- AnnotationType Unspecified 
- ANNOTATION_TYPE_UNSPECIFIED
- ImageClassification Annotation 
- IMAGE_CLASSIFICATION_ANNOTATIONClassification annotations in an image. Allowed for continuous evaluation.
- ImageBounding Box Annotation 
- IMAGE_BOUNDING_BOX_ANNOTATIONBounding box annotations in an image. A form of image object detection. Allowed for continuous evaluation.
- ImageOriented Bounding Box Annotation 
- IMAGE_ORIENTED_BOUNDING_BOX_ANNOTATIONOriented bounding box. The box does not have to be parallel to horizontal line.
- ImageBounding Poly Annotation 
- IMAGE_BOUNDING_POLY_ANNOTATIONBounding poly annotations in an image.
- ImagePolyline Annotation 
- IMAGE_POLYLINE_ANNOTATIONPolyline annotations in an image.
- ImageSegmentation Annotation 
- IMAGE_SEGMENTATION_ANNOTATIONSegmentation annotations in an image.
- VideoShots Classification Annotation 
- VIDEO_SHOTS_CLASSIFICATION_ANNOTATIONClassification annotations in video shots.
- VideoObject Tracking Annotation 
- VIDEO_OBJECT_TRACKING_ANNOTATIONVideo object tracking annotation.
- VideoObject Detection Annotation 
- VIDEO_OBJECT_DETECTION_ANNOTATIONVideo object detection annotation.
- VideoEvent Annotation 
- VIDEO_EVENT_ANNOTATIONVideo event annotation.
- TextClassification Annotation 
- TEXT_CLASSIFICATION_ANNOTATIONClassification for text. Allowed for continuous evaluation.
- TextEntity Extraction Annotation 
- TEXT_ENTITY_EXTRACTION_ANNOTATIONEntity extraction for text.
- GeneralClassification Annotation 
- GENERAL_CLASSIFICATION_ANNOTATIONGeneral classification. Allowed for continuous evaluation.
- GoogleCloud Datalabeling V1beta1Input Config Annotation Type Annotation Type Unspecified 
- ANNOTATION_TYPE_UNSPECIFIED
- GoogleCloud Datalabeling V1beta1Input Config Annotation Type Image Classification Annotation 
- IMAGE_CLASSIFICATION_ANNOTATIONClassification annotations in an image. Allowed for continuous evaluation.
- GoogleCloud Datalabeling V1beta1Input Config Annotation Type Image Bounding Box Annotation 
- IMAGE_BOUNDING_BOX_ANNOTATIONBounding box annotations in an image. A form of image object detection. Allowed for continuous evaluation.
- GoogleCloud Datalabeling V1beta1Input Config Annotation Type Image Oriented Bounding Box Annotation 
- IMAGE_ORIENTED_BOUNDING_BOX_ANNOTATIONOriented bounding box. The box does not have to be parallel to horizontal line.
- GoogleCloud Datalabeling V1beta1Input Config Annotation Type Image Bounding Poly Annotation 
- IMAGE_BOUNDING_POLY_ANNOTATIONBounding poly annotations in an image.
- GoogleCloud Datalabeling V1beta1Input Config Annotation Type Image Polyline Annotation 
- IMAGE_POLYLINE_ANNOTATIONPolyline annotations in an image.
- GoogleCloud Datalabeling V1beta1Input Config Annotation Type Image Segmentation Annotation 
- IMAGE_SEGMENTATION_ANNOTATIONSegmentation annotations in an image.
- GoogleCloud Datalabeling V1beta1Input Config Annotation Type Video Shots Classification Annotation 
- VIDEO_SHOTS_CLASSIFICATION_ANNOTATIONClassification annotations in video shots.
- GoogleCloud Datalabeling V1beta1Input Config Annotation Type Video Object Tracking Annotation 
- VIDEO_OBJECT_TRACKING_ANNOTATIONVideo object tracking annotation.
- GoogleCloud Datalabeling V1beta1Input Config Annotation Type Video Object Detection Annotation 
- VIDEO_OBJECT_DETECTION_ANNOTATIONVideo object detection annotation.
- GoogleCloud Datalabeling V1beta1Input Config Annotation Type Video Event Annotation 
- VIDEO_EVENT_ANNOTATIONVideo event annotation.
- GoogleCloud Datalabeling V1beta1Input Config Annotation Type Text Classification Annotation 
- TEXT_CLASSIFICATION_ANNOTATIONClassification for text. Allowed for continuous evaluation.
- GoogleCloud Datalabeling V1beta1Input Config Annotation Type Text Entity Extraction Annotation 
- TEXT_ENTITY_EXTRACTION_ANNOTATIONEntity extraction for text.
- GoogleCloud Datalabeling V1beta1Input Config Annotation Type General Classification Annotation 
- GENERAL_CLASSIFICATION_ANNOTATIONGeneral classification. Allowed for continuous evaluation.
- AnnotationType Unspecified 
- ANNOTATION_TYPE_UNSPECIFIED
- ImageClassification Annotation 
- IMAGE_CLASSIFICATION_ANNOTATIONClassification annotations in an image. Allowed for continuous evaluation.
- ImageBounding Box Annotation 
- IMAGE_BOUNDING_BOX_ANNOTATIONBounding box annotations in an image. A form of image object detection. Allowed for continuous evaluation.
- ImageOriented Bounding Box Annotation 
- IMAGE_ORIENTED_BOUNDING_BOX_ANNOTATIONOriented bounding box. The box does not have to be parallel to horizontal line.
- ImageBounding Poly Annotation 
- IMAGE_BOUNDING_POLY_ANNOTATIONBounding poly annotations in an image.
- ImagePolyline Annotation 
- IMAGE_POLYLINE_ANNOTATIONPolyline annotations in an image.
- ImageSegmentation Annotation 
- IMAGE_SEGMENTATION_ANNOTATIONSegmentation annotations in an image.
- VideoShots Classification Annotation 
- VIDEO_SHOTS_CLASSIFICATION_ANNOTATIONClassification annotations in video shots.
- VideoObject Tracking Annotation 
- VIDEO_OBJECT_TRACKING_ANNOTATIONVideo object tracking annotation.
- VideoObject Detection Annotation 
- VIDEO_OBJECT_DETECTION_ANNOTATIONVideo object detection annotation.
- VideoEvent Annotation 
- VIDEO_EVENT_ANNOTATIONVideo event annotation.
- TextClassification Annotation 
- TEXT_CLASSIFICATION_ANNOTATIONClassification for text. Allowed for continuous evaluation.
- TextEntity Extraction Annotation 
- TEXT_ENTITY_EXTRACTION_ANNOTATIONEntity extraction for text.
- GeneralClassification Annotation 
- GENERAL_CLASSIFICATION_ANNOTATIONGeneral classification. Allowed for continuous evaluation.
- AnnotationType Unspecified 
- ANNOTATION_TYPE_UNSPECIFIED
- ImageClassification Annotation 
- IMAGE_CLASSIFICATION_ANNOTATIONClassification annotations in an image. Allowed for continuous evaluation.
- ImageBounding Box Annotation 
- IMAGE_BOUNDING_BOX_ANNOTATIONBounding box annotations in an image. A form of image object detection. Allowed for continuous evaluation.
- ImageOriented Bounding Box Annotation 
- IMAGE_ORIENTED_BOUNDING_BOX_ANNOTATIONOriented bounding box. The box does not have to be parallel to horizontal line.
- ImageBounding Poly Annotation 
- IMAGE_BOUNDING_POLY_ANNOTATIONBounding poly annotations in an image.
- ImagePolyline Annotation 
- IMAGE_POLYLINE_ANNOTATIONPolyline annotations in an image.
- ImageSegmentation Annotation 
- IMAGE_SEGMENTATION_ANNOTATIONSegmentation annotations in an image.
- VideoShots Classification Annotation 
- VIDEO_SHOTS_CLASSIFICATION_ANNOTATIONClassification annotations in video shots.
- VideoObject Tracking Annotation 
- VIDEO_OBJECT_TRACKING_ANNOTATIONVideo object tracking annotation.
- VideoObject Detection Annotation 
- VIDEO_OBJECT_DETECTION_ANNOTATIONVideo object detection annotation.
- VideoEvent Annotation 
- VIDEO_EVENT_ANNOTATIONVideo event annotation.
- TextClassification Annotation 
- TEXT_CLASSIFICATION_ANNOTATIONClassification for text. Allowed for continuous evaluation.
- TextEntity Extraction Annotation 
- TEXT_ENTITY_EXTRACTION_ANNOTATIONEntity extraction for text.
- GeneralClassification Annotation 
- GENERAL_CLASSIFICATION_ANNOTATIONGeneral classification. Allowed for continuous evaluation.
- ANNOTATION_TYPE_UNSPECIFIED
- ANNOTATION_TYPE_UNSPECIFIED
- IMAGE_CLASSIFICATION_ANNOTATION
- IMAGE_CLASSIFICATION_ANNOTATIONClassification annotations in an image. Allowed for continuous evaluation.
- IMAGE_BOUNDING_BOX_ANNOTATION
- IMAGE_BOUNDING_BOX_ANNOTATIONBounding box annotations in an image. A form of image object detection. Allowed for continuous evaluation.
- IMAGE_ORIENTED_BOUNDING_BOX_ANNOTATION
- IMAGE_ORIENTED_BOUNDING_BOX_ANNOTATIONOriented bounding box. The box does not have to be parallel to horizontal line.
- IMAGE_BOUNDING_POLY_ANNOTATION
- IMAGE_BOUNDING_POLY_ANNOTATIONBounding poly annotations in an image.
- IMAGE_POLYLINE_ANNOTATION
- IMAGE_POLYLINE_ANNOTATIONPolyline annotations in an image.
- IMAGE_SEGMENTATION_ANNOTATION
- IMAGE_SEGMENTATION_ANNOTATIONSegmentation annotations in an image.
- VIDEO_SHOTS_CLASSIFICATION_ANNOTATION
- VIDEO_SHOTS_CLASSIFICATION_ANNOTATIONClassification annotations in video shots.
- VIDEO_OBJECT_TRACKING_ANNOTATION
- VIDEO_OBJECT_TRACKING_ANNOTATIONVideo object tracking annotation.
- VIDEO_OBJECT_DETECTION_ANNOTATION
- VIDEO_OBJECT_DETECTION_ANNOTATIONVideo object detection annotation.
- VIDEO_EVENT_ANNOTATION
- VIDEO_EVENT_ANNOTATIONVideo event annotation.
- TEXT_CLASSIFICATION_ANNOTATION
- TEXT_CLASSIFICATION_ANNOTATIONClassification for text. Allowed for continuous evaluation.
- TEXT_ENTITY_EXTRACTION_ANNOTATION
- TEXT_ENTITY_EXTRACTION_ANNOTATIONEntity extraction for text.
- GENERAL_CLASSIFICATION_ANNOTATION
- GENERAL_CLASSIFICATION_ANNOTATIONGeneral classification. Allowed for continuous evaluation.
- "ANNOTATION_TYPE_UNSPECIFIED"
- ANNOTATION_TYPE_UNSPECIFIED
- "IMAGE_CLASSIFICATION_ANNOTATION"
- IMAGE_CLASSIFICATION_ANNOTATIONClassification annotations in an image. Allowed for continuous evaluation.
- "IMAGE_BOUNDING_BOX_ANNOTATION"
- IMAGE_BOUNDING_BOX_ANNOTATIONBounding box annotations in an image. A form of image object detection. Allowed for continuous evaluation.
- "IMAGE_ORIENTED_BOUNDING_BOX_ANNOTATION"
- IMAGE_ORIENTED_BOUNDING_BOX_ANNOTATIONOriented bounding box. The box does not have to be parallel to horizontal line.
- "IMAGE_BOUNDING_POLY_ANNOTATION"
- IMAGE_BOUNDING_POLY_ANNOTATIONBounding poly annotations in an image.
- "IMAGE_POLYLINE_ANNOTATION"
- IMAGE_POLYLINE_ANNOTATIONPolyline annotations in an image.
- "IMAGE_SEGMENTATION_ANNOTATION"
- IMAGE_SEGMENTATION_ANNOTATIONSegmentation annotations in an image.
- "VIDEO_SHOTS_CLASSIFICATION_ANNOTATION"
- VIDEO_SHOTS_CLASSIFICATION_ANNOTATIONClassification annotations in video shots.
- "VIDEO_OBJECT_TRACKING_ANNOTATION"
- VIDEO_OBJECT_TRACKING_ANNOTATIONVideo object tracking annotation.
- "VIDEO_OBJECT_DETECTION_ANNOTATION"
- VIDEO_OBJECT_DETECTION_ANNOTATIONVideo object detection annotation.
- "VIDEO_EVENT_ANNOTATION"
- VIDEO_EVENT_ANNOTATIONVideo event annotation.
- "TEXT_CLASSIFICATION_ANNOTATION"
- TEXT_CLASSIFICATION_ANNOTATIONClassification for text. Allowed for continuous evaluation.
- "TEXT_ENTITY_EXTRACTION_ANNOTATION"
- TEXT_ENTITY_EXTRACTION_ANNOTATIONEntity extraction for text.
- "GENERAL_CLASSIFICATION_ANNOTATION"
- GENERAL_CLASSIFICATION_ANNOTATIONGeneral classification. Allowed for continuous evaluation.
GoogleCloudDatalabelingV1beta1InputConfigDataType, GoogleCloudDatalabelingV1beta1InputConfigDataTypeArgs              
- DataType Unspecified 
- DATA_TYPE_UNSPECIFIEDData type is unspecified.
- Image
- IMAGEAllowed for continuous evaluation.
- Video
- VIDEOVideo data type.
- Text
- TEXTAllowed for continuous evaluation.
- GeneralData 
- GENERAL_DATAAllowed for continuous evaluation.
- GoogleCloud Datalabeling V1beta1Input Config Data Type Data Type Unspecified 
- DATA_TYPE_UNSPECIFIEDData type is unspecified.
- GoogleCloud Datalabeling V1beta1Input Config Data Type Image 
- IMAGEAllowed for continuous evaluation.
- GoogleCloud Datalabeling V1beta1Input Config Data Type Video 
- VIDEOVideo data type.
- GoogleCloud Datalabeling V1beta1Input Config Data Type Text 
- TEXTAllowed for continuous evaluation.
- GoogleCloud Datalabeling V1beta1Input Config Data Type General Data 
- GENERAL_DATAAllowed for continuous evaluation.
- DataType Unspecified 
- DATA_TYPE_UNSPECIFIEDData type is unspecified.
- Image
- IMAGEAllowed for continuous evaluation.
- Video
- VIDEOVideo data type.
- Text
- TEXTAllowed for continuous evaluation.
- GeneralData 
- GENERAL_DATAAllowed for continuous evaluation.
- DataType Unspecified 
- DATA_TYPE_UNSPECIFIEDData type is unspecified.
- Image
- IMAGEAllowed for continuous evaluation.
- Video
- VIDEOVideo data type.
- Text
- TEXTAllowed for continuous evaluation.
- GeneralData 
- GENERAL_DATAAllowed for continuous evaluation.
- DATA_TYPE_UNSPECIFIED
- DATA_TYPE_UNSPECIFIEDData type is unspecified.
- IMAGE
- IMAGEAllowed for continuous evaluation.
- VIDEO
- VIDEOVideo data type.
- TEXT
- TEXTAllowed for continuous evaluation.
- GENERAL_DATA
- GENERAL_DATAAllowed for continuous evaluation.
- "DATA_TYPE_UNSPECIFIED"
- DATA_TYPE_UNSPECIFIEDData type is unspecified.
- "IMAGE"
- IMAGEAllowed for continuous evaluation.
- "VIDEO"
- VIDEOVideo data type.
- "TEXT"
- TEXTAllowed for continuous evaluation.
- "GENERAL_DATA"
- GENERAL_DATAAllowed for continuous evaluation.
GoogleCloudDatalabelingV1beta1InputConfigResponse, GoogleCloudDatalabelingV1beta1InputConfigResponseArgs            
- AnnotationType string
- Optional. The type of annotation to be performed on this data. You must specify this field if you are using this InputConfig in an EvaluationJob.
- BigquerySource Pulumi.Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Big Query Source Response 
- Source located in BigQuery. You must specify this field if you are using this InputConfig in an EvaluationJob.
- ClassificationMetadata Pulumi.Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Classification Metadata Response 
- Optional. Metadata about annotations for the input. You must specify this field if you are using this InputConfig in an EvaluationJob for a model version that performs classification.
- DataType string
- Data type must be specifed when user tries to import data.
- GcsSource Pulumi.Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Gcs Source Response 
- Source located in Cloud Storage.
- TextMetadata Pulumi.Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Text Metadata Response 
- Required for text import, as language code must be specified.
- AnnotationType string
- Optional. The type of annotation to be performed on this data. You must specify this field if you are using this InputConfig in an EvaluationJob.
- BigquerySource GoogleCloud Datalabeling V1beta1Big Query Source Response 
- Source located in BigQuery. You must specify this field if you are using this InputConfig in an EvaluationJob.
- ClassificationMetadata GoogleCloud Datalabeling V1beta1Classification Metadata Response 
- Optional. Metadata about annotations for the input. You must specify this field if you are using this InputConfig in an EvaluationJob for a model version that performs classification.
- DataType string
- Data type must be specifed when user tries to import data.
- GcsSource GoogleCloud Datalabeling V1beta1Gcs Source Response 
- Source located in Cloud Storage.
- TextMetadata GoogleCloud Datalabeling V1beta1Text Metadata Response 
- Required for text import, as language code must be specified.
- annotationType String
- Optional. The type of annotation to be performed on this data. You must specify this field if you are using this InputConfig in an EvaluationJob.
- bigquerySource GoogleCloud Datalabeling V1beta1Big Query Source Response 
- Source located in BigQuery. You must specify this field if you are using this InputConfig in an EvaluationJob.
- classificationMetadata GoogleCloud Datalabeling V1beta1Classification Metadata Response 
- Optional. Metadata about annotations for the input. You must specify this field if you are using this InputConfig in an EvaluationJob for a model version that performs classification.
- dataType String
- Data type must be specifed when user tries to import data.
- gcsSource GoogleCloud Datalabeling V1beta1Gcs Source Response 
- Source located in Cloud Storage.
- textMetadata GoogleCloud Datalabeling V1beta1Text Metadata Response 
- Required for text import, as language code must be specified.
- annotationType string
- Optional. The type of annotation to be performed on this data. You must specify this field if you are using this InputConfig in an EvaluationJob.
- bigquerySource GoogleCloud Datalabeling V1beta1Big Query Source Response 
- Source located in BigQuery. You must specify this field if you are using this InputConfig in an EvaluationJob.
- classificationMetadata GoogleCloud Datalabeling V1beta1Classification Metadata Response 
- Optional. Metadata about annotations for the input. You must specify this field if you are using this InputConfig in an EvaluationJob for a model version that performs classification.
- dataType string
- Data type must be specifed when user tries to import data.
- gcsSource GoogleCloud Datalabeling V1beta1Gcs Source Response 
- Source located in Cloud Storage.
- textMetadata GoogleCloud Datalabeling V1beta1Text Metadata Response 
- Required for text import, as language code must be specified.
- annotation_type str
- Optional. The type of annotation to be performed on this data. You must specify this field if you are using this InputConfig in an EvaluationJob.
- bigquery_source GoogleCloud Datalabeling V1beta1Big Query Source Response 
- Source located in BigQuery. You must specify this field if you are using this InputConfig in an EvaluationJob.
- classification_metadata GoogleCloud Datalabeling V1beta1Classification Metadata Response 
- Optional. Metadata about annotations for the input. You must specify this field if you are using this InputConfig in an EvaluationJob for a model version that performs classification.
- data_type str
- Data type must be specifed when user tries to import data.
- gcs_source GoogleCloud Datalabeling V1beta1Gcs Source Response 
- Source located in Cloud Storage.
- text_metadata GoogleCloud Datalabeling V1beta1Text Metadata Response 
- Required for text import, as language code must be specified.
- annotationType String
- Optional. The type of annotation to be performed on this data. You must specify this field if you are using this InputConfig in an EvaluationJob.
- bigquerySource Property Map
- Source located in BigQuery. You must specify this field if you are using this InputConfig in an EvaluationJob.
- classificationMetadata Property Map
- Optional. Metadata about annotations for the input. You must specify this field if you are using this InputConfig in an EvaluationJob for a model version that performs classification.
- dataType String
- Data type must be specifed when user tries to import data.
- gcsSource Property Map
- Source located in Cloud Storage.
- textMetadata Property Map
- Required for text import, as language code must be specified.
GoogleCloudDatalabelingV1beta1SentimentConfig, GoogleCloudDatalabelingV1beta1SentimentConfigArgs          
- EnableLabel boolSentiment Selection 
- If set to true, contributors will have the option to select sentiment of the label they selected, to mark it as negative or positive label. Default is false.
- EnableLabel boolSentiment Selection 
- If set to true, contributors will have the option to select sentiment of the label they selected, to mark it as negative or positive label. Default is false.
- enableLabel BooleanSentiment Selection 
- If set to true, contributors will have the option to select sentiment of the label they selected, to mark it as negative or positive label. Default is false.
- enableLabel booleanSentiment Selection 
- If set to true, contributors will have the option to select sentiment of the label they selected, to mark it as negative or positive label. Default is false.
- enable_label_ boolsentiment_ selection 
- If set to true, contributors will have the option to select sentiment of the label they selected, to mark it as negative or positive label. Default is false.
- enableLabel BooleanSentiment Selection 
- If set to true, contributors will have the option to select sentiment of the label they selected, to mark it as negative or positive label. Default is false.
GoogleCloudDatalabelingV1beta1SentimentConfigResponse, GoogleCloudDatalabelingV1beta1SentimentConfigResponseArgs            
- EnableLabel boolSentiment Selection 
- If set to true, contributors will have the option to select sentiment of the label they selected, to mark it as negative or positive label. Default is false.
- EnableLabel boolSentiment Selection 
- If set to true, contributors will have the option to select sentiment of the label they selected, to mark it as negative or positive label. Default is false.
- enableLabel BooleanSentiment Selection 
- If set to true, contributors will have the option to select sentiment of the label they selected, to mark it as negative or positive label. Default is false.
- enableLabel booleanSentiment Selection 
- If set to true, contributors will have the option to select sentiment of the label they selected, to mark it as negative or positive label. Default is false.
- enable_label_ boolsentiment_ selection 
- If set to true, contributors will have the option to select sentiment of the label they selected, to mark it as negative or positive label. Default is false.
- enableLabel BooleanSentiment Selection 
- If set to true, contributors will have the option to select sentiment of the label they selected, to mark it as negative or positive label. Default is false.
GoogleCloudDatalabelingV1beta1TextClassificationConfig, GoogleCloudDatalabelingV1beta1TextClassificationConfigArgs            
- AnnotationSpec stringSet 
- Annotation spec set resource name.
- AllowMulti boolLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one text segment.
- SentimentConfig Pulumi.Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Sentiment Config 
- Optional. Configs for sentiment selection. We deprecate sentiment analysis in data labeling side as it is incompatible with uCAIP.
- AnnotationSpec stringSet 
- Annotation spec set resource name.
- AllowMulti boolLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one text segment.
- SentimentConfig GoogleCloud Datalabeling V1beta1Sentiment Config 
- Optional. Configs for sentiment selection. We deprecate sentiment analysis in data labeling side as it is incompatible with uCAIP.
- annotationSpec StringSet 
- Annotation spec set resource name.
- allowMulti BooleanLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one text segment.
- sentimentConfig GoogleCloud Datalabeling V1beta1Sentiment Config 
- Optional. Configs for sentiment selection. We deprecate sentiment analysis in data labeling side as it is incompatible with uCAIP.
- annotationSpec stringSet 
- Annotation spec set resource name.
- allowMulti booleanLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one text segment.
- sentimentConfig GoogleCloud Datalabeling V1beta1Sentiment Config 
- Optional. Configs for sentiment selection. We deprecate sentiment analysis in data labeling side as it is incompatible with uCAIP.
- annotation_spec_ strset 
- Annotation spec set resource name.
- allow_multi_ boollabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one text segment.
- sentiment_config GoogleCloud Datalabeling V1beta1Sentiment Config 
- Optional. Configs for sentiment selection. We deprecate sentiment analysis in data labeling side as it is incompatible with uCAIP.
- annotationSpec StringSet 
- Annotation spec set resource name.
- allowMulti BooleanLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one text segment.
- sentimentConfig Property Map
- Optional. Configs for sentiment selection. We deprecate sentiment analysis in data labeling side as it is incompatible with uCAIP.
GoogleCloudDatalabelingV1beta1TextClassificationConfigResponse, GoogleCloudDatalabelingV1beta1TextClassificationConfigResponseArgs              
- AllowMulti boolLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one text segment.
- AnnotationSpec stringSet 
- Annotation spec set resource name.
- SentimentConfig Pulumi.Google Native. Data Labeling. V1Beta1. Inputs. Google Cloud Datalabeling V1beta1Sentiment Config Response 
- Optional. Configs for sentiment selection. We deprecate sentiment analysis in data labeling side as it is incompatible with uCAIP.
- AllowMulti boolLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one text segment.
- AnnotationSpec stringSet 
- Annotation spec set resource name.
- SentimentConfig GoogleCloud Datalabeling V1beta1Sentiment Config Response 
- Optional. Configs for sentiment selection. We deprecate sentiment analysis in data labeling side as it is incompatible with uCAIP.
- allowMulti BooleanLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one text segment.
- annotationSpec StringSet 
- Annotation spec set resource name.
- sentimentConfig GoogleCloud Datalabeling V1beta1Sentiment Config Response 
- Optional. Configs for sentiment selection. We deprecate sentiment analysis in data labeling side as it is incompatible with uCAIP.
- allowMulti booleanLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one text segment.
- annotationSpec stringSet 
- Annotation spec set resource name.
- sentimentConfig GoogleCloud Datalabeling V1beta1Sentiment Config Response 
- Optional. Configs for sentiment selection. We deprecate sentiment analysis in data labeling side as it is incompatible with uCAIP.
- allow_multi_ boollabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one text segment.
- annotation_spec_ strset 
- Annotation spec set resource name.
- sentiment_config GoogleCloud Datalabeling V1beta1Sentiment Config Response 
- Optional. Configs for sentiment selection. We deprecate sentiment analysis in data labeling side as it is incompatible with uCAIP.
- allowMulti BooleanLabel 
- Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one text segment.
- annotationSpec StringSet 
- Annotation spec set resource name.
- sentimentConfig Property Map
- Optional. Configs for sentiment selection. We deprecate sentiment analysis in data labeling side as it is incompatible with uCAIP.
GoogleCloudDatalabelingV1beta1TextMetadata, GoogleCloudDatalabelingV1beta1TextMetadataArgs          
- LanguageCode string
- The language of this text, as a BCP-47. Default value is en-US.
- LanguageCode string
- The language of this text, as a BCP-47. Default value is en-US.
- languageCode String
- The language of this text, as a BCP-47. Default value is en-US.
- languageCode string
- The language of this text, as a BCP-47. Default value is en-US.
- language_code str
- The language of this text, as a BCP-47. Default value is en-US.
- languageCode String
- The language of this text, as a BCP-47. Default value is en-US.
GoogleCloudDatalabelingV1beta1TextMetadataResponse, GoogleCloudDatalabelingV1beta1TextMetadataResponseArgs            
- LanguageCode string
- The language of this text, as a BCP-47. Default value is en-US.
- LanguageCode string
- The language of this text, as a BCP-47. Default value is en-US.
- languageCode String
- The language of this text, as a BCP-47. Default value is en-US.
- languageCode string
- The language of this text, as a BCP-47. Default value is en-US.
- language_code str
- The language of this text, as a BCP-47. Default value is en-US.
- languageCode String
- The language of this text, as a BCP-47. Default value is en-US.
GoogleRpcStatusResponse, GoogleRpcStatusResponseArgs        
- Code int
- The status code, which should be an enum value of google.rpc.Code.
- Details
List<ImmutableDictionary<string, string>> 
- A list of messages that carry the error details. There is a common set of message types for APIs to use.
- Message string
- A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
- Code int
- The status code, which should be an enum value of google.rpc.Code.
- Details []map[string]string
- A list of messages that carry the error details. There is a common set of message types for APIs to use.
- Message string
- A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
- code Integer
- The status code, which should be an enum value of google.rpc.Code.
- details List<Map<String,String>>
- A list of messages that carry the error details. There is a common set of message types for APIs to use.
- message String
- A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
- code number
- The status code, which should be an enum value of google.rpc.Code.
- details {[key: string]: string}[]
- A list of messages that carry the error details. There is a common set of message types for APIs to use.
- message string
- A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
- code int
- The status code, which should be an enum value of google.rpc.Code.
- details Sequence[Mapping[str, str]]
- A list of messages that carry the error details. There is a common set of message types for APIs to use.
- message str
- A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
- code Number
- The status code, which should be an enum value of google.rpc.Code.
- details List<Map<String>>
- A list of messages that carry the error details. There is a common set of message types for APIs to use.
- message String
- A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
Package Details
- Repository
- Google Cloud Native pulumi/pulumi-google-native
- License
- Apache-2.0
Google Cloud Native is in preview. Google Cloud Classic is fully supported.