Google Cloud Native is in preview. Google Cloud Classic is fully supported.
google-native.aiplatform/v1beta1.PersistentResource
Explore with Pulumi AI
Google Cloud Native is in preview. Google Cloud Classic is fully supported.
Creates a PersistentResource.
Create PersistentResource Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new PersistentResource(name: string, args: PersistentResourceArgs, opts?: CustomResourceOptions);@overload
def PersistentResource(resource_name: str,
                       args: PersistentResourceArgs,
                       opts: Optional[ResourceOptions] = None)
@overload
def PersistentResource(resource_name: str,
                       opts: Optional[ResourceOptions] = None,
                       persistent_resource_id: Optional[str] = None,
                       resource_pools: Optional[Sequence[GoogleCloudAiplatformV1beta1ResourcePoolArgs]] = None,
                       display_name: Optional[str] = None,
                       encryption_spec: Optional[GoogleCloudAiplatformV1beta1EncryptionSpecArgs] = None,
                       labels: Optional[Mapping[str, str]] = None,
                       location: Optional[str] = None,
                       name: Optional[str] = None,
                       network: Optional[str] = None,
                       project: Optional[str] = None,
                       reserved_ip_ranges: Optional[Sequence[str]] = None,
                       resource_runtime_spec: Optional[GoogleCloudAiplatformV1beta1ResourceRuntimeSpecArgs] = None)func NewPersistentResource(ctx *Context, name string, args PersistentResourceArgs, opts ...ResourceOption) (*PersistentResource, error)public PersistentResource(string name, PersistentResourceArgs args, CustomResourceOptions? opts = null)
public PersistentResource(String name, PersistentResourceArgs args)
public PersistentResource(String name, PersistentResourceArgs args, CustomResourceOptions options)
type: google-native:aiplatform/v1beta1:PersistentResource
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args PersistentResourceArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args PersistentResourceArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args PersistentResourceArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args PersistentResourceArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args PersistentResourceArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var persistentResourceResource = new GoogleNative.Aiplatform.V1Beta1.PersistentResource("persistentResourceResource", new()
{
    PersistentResourceId = "string",
    ResourcePools = new[]
    {
        new GoogleNative.Aiplatform.V1Beta1.Inputs.GoogleCloudAiplatformV1beta1ResourcePoolArgs
        {
            MachineSpec = new GoogleNative.Aiplatform.V1Beta1.Inputs.GoogleCloudAiplatformV1beta1MachineSpecArgs
            {
                AcceleratorCount = 0,
                AcceleratorType = GoogleNative.Aiplatform.V1Beta1.GoogleCloudAiplatformV1beta1MachineSpecAcceleratorType.AcceleratorTypeUnspecified,
                MachineType = "string",
                TpuTopology = "string",
            },
            AutoscalingSpec = new GoogleNative.Aiplatform.V1Beta1.Inputs.GoogleCloudAiplatformV1beta1ResourcePoolAutoscalingSpecArgs
            {
                MaxReplicaCount = "string",
                MinReplicaCount = "string",
            },
            DiskSpec = new GoogleNative.Aiplatform.V1Beta1.Inputs.GoogleCloudAiplatformV1beta1DiskSpecArgs
            {
                BootDiskSizeGb = 0,
                BootDiskType = "string",
            },
            Id = "string",
            ReplicaCount = "string",
        },
    },
    DisplayName = "string",
    EncryptionSpec = new GoogleNative.Aiplatform.V1Beta1.Inputs.GoogleCloudAiplatformV1beta1EncryptionSpecArgs
    {
        KmsKeyName = "string",
    },
    Labels = 
    {
        { "string", "string" },
    },
    Location = "string",
    Name = "string",
    Network = "string",
    Project = "string",
    ReservedIpRanges = new[]
    {
        "string",
    },
    ResourceRuntimeSpec = new GoogleNative.Aiplatform.V1Beta1.Inputs.GoogleCloudAiplatformV1beta1ResourceRuntimeSpecArgs
    {
        RaySpec = new GoogleNative.Aiplatform.V1Beta1.Inputs.GoogleCloudAiplatformV1beta1RaySpecArgs
        {
            HeadNodeResourcePoolId = "string",
            ImageUri = "string",
            ResourcePoolImages = 
            {
                { "string", "string" },
            },
        },
        ServiceAccountSpec = new GoogleNative.Aiplatform.V1Beta1.Inputs.GoogleCloudAiplatformV1beta1ServiceAccountSpecArgs
        {
            EnableCustomServiceAccount = false,
            ServiceAccount = "string",
        },
    },
});
example, err := aiplatformv1beta1.NewPersistentResource(ctx, "persistentResourceResource", &aiplatformv1beta1.PersistentResourceArgs{
	PersistentResourceId: pulumi.String("string"),
	ResourcePools: aiplatform.GoogleCloudAiplatformV1beta1ResourcePoolArray{
		&aiplatform.GoogleCloudAiplatformV1beta1ResourcePoolArgs{
			MachineSpec: &aiplatform.GoogleCloudAiplatformV1beta1MachineSpecArgs{
				AcceleratorCount: pulumi.Int(0),
				AcceleratorType:  aiplatformv1beta1.GoogleCloudAiplatformV1beta1MachineSpecAcceleratorTypeAcceleratorTypeUnspecified,
				MachineType:      pulumi.String("string"),
				TpuTopology:      pulumi.String("string"),
			},
			AutoscalingSpec: &aiplatform.GoogleCloudAiplatformV1beta1ResourcePoolAutoscalingSpecArgs{
				MaxReplicaCount: pulumi.String("string"),
				MinReplicaCount: pulumi.String("string"),
			},
			DiskSpec: &aiplatform.GoogleCloudAiplatformV1beta1DiskSpecArgs{
				BootDiskSizeGb: pulumi.Int(0),
				BootDiskType:   pulumi.String("string"),
			},
			Id:           pulumi.String("string"),
			ReplicaCount: pulumi.String("string"),
		},
	},
	DisplayName: pulumi.String("string"),
	EncryptionSpec: &aiplatform.GoogleCloudAiplatformV1beta1EncryptionSpecArgs{
		KmsKeyName: pulumi.String("string"),
	},
	Labels: pulumi.StringMap{
		"string": pulumi.String("string"),
	},
	Location: pulumi.String("string"),
	Name:     pulumi.String("string"),
	Network:  pulumi.String("string"),
	Project:  pulumi.String("string"),
	ReservedIpRanges: pulumi.StringArray{
		pulumi.String("string"),
	},
	ResourceRuntimeSpec: &aiplatform.GoogleCloudAiplatformV1beta1ResourceRuntimeSpecArgs{
		RaySpec: &aiplatform.GoogleCloudAiplatformV1beta1RaySpecArgs{
			HeadNodeResourcePoolId: pulumi.String("string"),
			ImageUri:               pulumi.String("string"),
			ResourcePoolImages: pulumi.StringMap{
				"string": pulumi.String("string"),
			},
		},
		ServiceAccountSpec: &aiplatform.GoogleCloudAiplatformV1beta1ServiceAccountSpecArgs{
			EnableCustomServiceAccount: pulumi.Bool(false),
			ServiceAccount:             pulumi.String("string"),
		},
	},
})
var persistentResourceResource = new PersistentResource("persistentResourceResource", PersistentResourceArgs.builder()
    .persistentResourceId("string")
    .resourcePools(GoogleCloudAiplatformV1beta1ResourcePoolArgs.builder()
        .machineSpec(GoogleCloudAiplatformV1beta1MachineSpecArgs.builder()
            .acceleratorCount(0)
            .acceleratorType("ACCELERATOR_TYPE_UNSPECIFIED")
            .machineType("string")
            .tpuTopology("string")
            .build())
        .autoscalingSpec(GoogleCloudAiplatformV1beta1ResourcePoolAutoscalingSpecArgs.builder()
            .maxReplicaCount("string")
            .minReplicaCount("string")
            .build())
        .diskSpec(GoogleCloudAiplatformV1beta1DiskSpecArgs.builder()
            .bootDiskSizeGb(0)
            .bootDiskType("string")
            .build())
        .id("string")
        .replicaCount("string")
        .build())
    .displayName("string")
    .encryptionSpec(GoogleCloudAiplatformV1beta1EncryptionSpecArgs.builder()
        .kmsKeyName("string")
        .build())
    .labels(Map.of("string", "string"))
    .location("string")
    .name("string")
    .network("string")
    .project("string")
    .reservedIpRanges("string")
    .resourceRuntimeSpec(GoogleCloudAiplatformV1beta1ResourceRuntimeSpecArgs.builder()
        .raySpec(GoogleCloudAiplatformV1beta1RaySpecArgs.builder()
            .headNodeResourcePoolId("string")
            .imageUri("string")
            .resourcePoolImages(Map.of("string", "string"))
            .build())
        .serviceAccountSpec(GoogleCloudAiplatformV1beta1ServiceAccountSpecArgs.builder()
            .enableCustomServiceAccount(false)
            .serviceAccount("string")
            .build())
        .build())
    .build());
persistent_resource_resource = google_native.aiplatform.v1beta1.PersistentResource("persistentResourceResource",
    persistent_resource_id="string",
    resource_pools=[{
        "machine_spec": {
            "accelerator_count": 0,
            "accelerator_type": google_native.aiplatform.v1beta1.GoogleCloudAiplatformV1beta1MachineSpecAcceleratorType.ACCELERATOR_TYPE_UNSPECIFIED,
            "machine_type": "string",
            "tpu_topology": "string",
        },
        "autoscaling_spec": {
            "max_replica_count": "string",
            "min_replica_count": "string",
        },
        "disk_spec": {
            "boot_disk_size_gb": 0,
            "boot_disk_type": "string",
        },
        "id": "string",
        "replica_count": "string",
    }],
    display_name="string",
    encryption_spec={
        "kms_key_name": "string",
    },
    labels={
        "string": "string",
    },
    location="string",
    name="string",
    network="string",
    project="string",
    reserved_ip_ranges=["string"],
    resource_runtime_spec={
        "ray_spec": {
            "head_node_resource_pool_id": "string",
            "image_uri": "string",
            "resource_pool_images": {
                "string": "string",
            },
        },
        "service_account_spec": {
            "enable_custom_service_account": False,
            "service_account": "string",
        },
    })
const persistentResourceResource = new google_native.aiplatform.v1beta1.PersistentResource("persistentResourceResource", {
    persistentResourceId: "string",
    resourcePools: [{
        machineSpec: {
            acceleratorCount: 0,
            acceleratorType: google_native.aiplatform.v1beta1.GoogleCloudAiplatformV1beta1MachineSpecAcceleratorType.AcceleratorTypeUnspecified,
            machineType: "string",
            tpuTopology: "string",
        },
        autoscalingSpec: {
            maxReplicaCount: "string",
            minReplicaCount: "string",
        },
        diskSpec: {
            bootDiskSizeGb: 0,
            bootDiskType: "string",
        },
        id: "string",
        replicaCount: "string",
    }],
    displayName: "string",
    encryptionSpec: {
        kmsKeyName: "string",
    },
    labels: {
        string: "string",
    },
    location: "string",
    name: "string",
    network: "string",
    project: "string",
    reservedIpRanges: ["string"],
    resourceRuntimeSpec: {
        raySpec: {
            headNodeResourcePoolId: "string",
            imageUri: "string",
            resourcePoolImages: {
                string: "string",
            },
        },
        serviceAccountSpec: {
            enableCustomServiceAccount: false,
            serviceAccount: "string",
        },
    },
});
type: google-native:aiplatform/v1beta1:PersistentResource
properties:
    displayName: string
    encryptionSpec:
        kmsKeyName: string
    labels:
        string: string
    location: string
    name: string
    network: string
    persistentResourceId: string
    project: string
    reservedIpRanges:
        - string
    resourcePools:
        - autoscalingSpec:
            maxReplicaCount: string
            minReplicaCount: string
          diskSpec:
            bootDiskSizeGb: 0
            bootDiskType: string
          id: string
          machineSpec:
            acceleratorCount: 0
            acceleratorType: ACCELERATOR_TYPE_UNSPECIFIED
            machineType: string
            tpuTopology: string
          replicaCount: string
    resourceRuntimeSpec:
        raySpec:
            headNodeResourcePoolId: string
            imageUri: string
            resourcePoolImages:
                string: string
        serviceAccountSpec:
            enableCustomServiceAccount: false
            serviceAccount: string
PersistentResource Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The PersistentResource resource accepts the following input properties:
- PersistentResource stringId 
- Required. The ID to use for the PersistentResource, which become the final component of the PersistentResource's resource name. The maximum length is 63 characters, and valid characters are /^[a-z]([a-z0-9-]{0,61}[a-z0-9])?$/.
- ResourcePools List<Pulumi.Google Native. Aiplatform. V1Beta1. Inputs. Google Cloud Aiplatform V1beta1Resource Pool> 
- The spec of the pools of different resources.
- DisplayName string
- Optional. The display name of the PersistentResource. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- EncryptionSpec Pulumi.Google Native. Aiplatform. V1Beta1. Inputs. Google Cloud Aiplatform V1beta1Encryption Spec 
- Optional. Customer-managed encryption key spec for a PersistentResource. If set, this PersistentResource and all sub-resources of this PersistentResource will be secured by this key.
- Labels Dictionary<string, string>
- Optional. The labels with user-defined metadata to organize PersistentResource. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
- Location string
- Name string
- Immutable. Resource name of a PersistentResource.
- Network string
- Optional. The full name of the Compute Engine network to peered with Vertex AI to host the persistent resources. For example, projects/12345/global/networks/myVPC. Format is of the formprojects/{project}/global/networks/{network}. Where {project} is a project number, as in12345, and {network} is a network name. To specify this field, you must have already configured VPC Network Peering for Vertex AI. If this field is left unspecified, the resources aren't peered with any network.
- Project string
- ReservedIp List<string>Ranges 
- Optional. A list of names for the reserved IP ranges under the VPC network that can be used for this persistent resource. If set, we will deploy the persistent resource within the provided IP ranges. Otherwise, the persistent resource is deployed to any IP ranges under the provided VPC network. Example: ['vertex-ai-ip-range'].
- ResourceRuntime Pulumi.Spec Google Native. Aiplatform. V1Beta1. Inputs. Google Cloud Aiplatform V1beta1Resource Runtime Spec 
- Optional. Persistent Resource runtime spec. For example, used for Ray cluster configuration.
- PersistentResource stringId 
- Required. The ID to use for the PersistentResource, which become the final component of the PersistentResource's resource name. The maximum length is 63 characters, and valid characters are /^[a-z]([a-z0-9-]{0,61}[a-z0-9])?$/.
- ResourcePools []GoogleCloud Aiplatform V1beta1Resource Pool Args 
- The spec of the pools of different resources.
- DisplayName string
- Optional. The display name of the PersistentResource. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- EncryptionSpec GoogleCloud Aiplatform V1beta1Encryption Spec Args 
- Optional. Customer-managed encryption key spec for a PersistentResource. If set, this PersistentResource and all sub-resources of this PersistentResource will be secured by this key.
- Labels map[string]string
- Optional. The labels with user-defined metadata to organize PersistentResource. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
- Location string
- Name string
- Immutable. Resource name of a PersistentResource.
- Network string
- Optional. The full name of the Compute Engine network to peered with Vertex AI to host the persistent resources. For example, projects/12345/global/networks/myVPC. Format is of the formprojects/{project}/global/networks/{network}. Where {project} is a project number, as in12345, and {network} is a network name. To specify this field, you must have already configured VPC Network Peering for Vertex AI. If this field is left unspecified, the resources aren't peered with any network.
- Project string
- ReservedIp []stringRanges 
- Optional. A list of names for the reserved IP ranges under the VPC network that can be used for this persistent resource. If set, we will deploy the persistent resource within the provided IP ranges. Otherwise, the persistent resource is deployed to any IP ranges under the provided VPC network. Example: ['vertex-ai-ip-range'].
- ResourceRuntime GoogleSpec Cloud Aiplatform V1beta1Resource Runtime Spec Args 
- Optional. Persistent Resource runtime spec. For example, used for Ray cluster configuration.
- persistentResource StringId 
- Required. The ID to use for the PersistentResource, which become the final component of the PersistentResource's resource name. The maximum length is 63 characters, and valid characters are /^[a-z]([a-z0-9-]{0,61}[a-z0-9])?$/.
- resourcePools List<GoogleCloud Aiplatform V1beta1Resource Pool> 
- The spec of the pools of different resources.
- displayName String
- Optional. The display name of the PersistentResource. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- encryptionSpec GoogleCloud Aiplatform V1beta1Encryption Spec 
- Optional. Customer-managed encryption key spec for a PersistentResource. If set, this PersistentResource and all sub-resources of this PersistentResource will be secured by this key.
- labels Map<String,String>
- Optional. The labels with user-defined metadata to organize PersistentResource. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
- location String
- name String
- Immutable. Resource name of a PersistentResource.
- network String
- Optional. The full name of the Compute Engine network to peered with Vertex AI to host the persistent resources. For example, projects/12345/global/networks/myVPC. Format is of the formprojects/{project}/global/networks/{network}. Where {project} is a project number, as in12345, and {network} is a network name. To specify this field, you must have already configured VPC Network Peering for Vertex AI. If this field is left unspecified, the resources aren't peered with any network.
- project String
- reservedIp List<String>Ranges 
- Optional. A list of names for the reserved IP ranges under the VPC network that can be used for this persistent resource. If set, we will deploy the persistent resource within the provided IP ranges. Otherwise, the persistent resource is deployed to any IP ranges under the provided VPC network. Example: ['vertex-ai-ip-range'].
- resourceRuntime GoogleSpec Cloud Aiplatform V1beta1Resource Runtime Spec 
- Optional. Persistent Resource runtime spec. For example, used for Ray cluster configuration.
- persistentResource stringId 
- Required. The ID to use for the PersistentResource, which become the final component of the PersistentResource's resource name. The maximum length is 63 characters, and valid characters are /^[a-z]([a-z0-9-]{0,61}[a-z0-9])?$/.
- resourcePools GoogleCloud Aiplatform V1beta1Resource Pool[] 
- The spec of the pools of different resources.
- displayName string
- Optional. The display name of the PersistentResource. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- encryptionSpec GoogleCloud Aiplatform V1beta1Encryption Spec 
- Optional. Customer-managed encryption key spec for a PersistentResource. If set, this PersistentResource and all sub-resources of this PersistentResource will be secured by this key.
- labels {[key: string]: string}
- Optional. The labels with user-defined metadata to organize PersistentResource. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
- location string
- name string
- Immutable. Resource name of a PersistentResource.
- network string
- Optional. The full name of the Compute Engine network to peered with Vertex AI to host the persistent resources. For example, projects/12345/global/networks/myVPC. Format is of the formprojects/{project}/global/networks/{network}. Where {project} is a project number, as in12345, and {network} is a network name. To specify this field, you must have already configured VPC Network Peering for Vertex AI. If this field is left unspecified, the resources aren't peered with any network.
- project string
- reservedIp string[]Ranges 
- Optional. A list of names for the reserved IP ranges under the VPC network that can be used for this persistent resource. If set, we will deploy the persistent resource within the provided IP ranges. Otherwise, the persistent resource is deployed to any IP ranges under the provided VPC network. Example: ['vertex-ai-ip-range'].
- resourceRuntime GoogleSpec Cloud Aiplatform V1beta1Resource Runtime Spec 
- Optional. Persistent Resource runtime spec. For example, used for Ray cluster configuration.
- persistent_resource_ strid 
- Required. The ID to use for the PersistentResource, which become the final component of the PersistentResource's resource name. The maximum length is 63 characters, and valid characters are /^[a-z]([a-z0-9-]{0,61}[a-z0-9])?$/.
- resource_pools Sequence[GoogleCloud Aiplatform V1beta1Resource Pool Args] 
- The spec of the pools of different resources.
- display_name str
- Optional. The display name of the PersistentResource. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- encryption_spec GoogleCloud Aiplatform V1beta1Encryption Spec Args 
- Optional. Customer-managed encryption key spec for a PersistentResource. If set, this PersistentResource and all sub-resources of this PersistentResource will be secured by this key.
- labels Mapping[str, str]
- Optional. The labels with user-defined metadata to organize PersistentResource. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
- location str
- name str
- Immutable. Resource name of a PersistentResource.
- network str
- Optional. The full name of the Compute Engine network to peered with Vertex AI to host the persistent resources. For example, projects/12345/global/networks/myVPC. Format is of the formprojects/{project}/global/networks/{network}. Where {project} is a project number, as in12345, and {network} is a network name. To specify this field, you must have already configured VPC Network Peering for Vertex AI. If this field is left unspecified, the resources aren't peered with any network.
- project str
- reserved_ip_ Sequence[str]ranges 
- Optional. A list of names for the reserved IP ranges under the VPC network that can be used for this persistent resource. If set, we will deploy the persistent resource within the provided IP ranges. Otherwise, the persistent resource is deployed to any IP ranges under the provided VPC network. Example: ['vertex-ai-ip-range'].
- resource_runtime_ Googlespec Cloud Aiplatform V1beta1Resource Runtime Spec Args 
- Optional. Persistent Resource runtime spec. For example, used for Ray cluster configuration.
- persistentResource StringId 
- Required. The ID to use for the PersistentResource, which become the final component of the PersistentResource's resource name. The maximum length is 63 characters, and valid characters are /^[a-z]([a-z0-9-]{0,61}[a-z0-9])?$/.
- resourcePools List<Property Map>
- The spec of the pools of different resources.
- displayName String
- Optional. The display name of the PersistentResource. The name can be up to 128 characters long and can consist of any UTF-8 characters.
- encryptionSpec Property Map
- Optional. Customer-managed encryption key spec for a PersistentResource. If set, this PersistentResource and all sub-resources of this PersistentResource will be secured by this key.
- labels Map<String>
- Optional. The labels with user-defined metadata to organize PersistentResource. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
- location String
- name String
- Immutable. Resource name of a PersistentResource.
- network String
- Optional. The full name of the Compute Engine network to peered with Vertex AI to host the persistent resources. For example, projects/12345/global/networks/myVPC. Format is of the formprojects/{project}/global/networks/{network}. Where {project} is a project number, as in12345, and {network} is a network name. To specify this field, you must have already configured VPC Network Peering for Vertex AI. If this field is left unspecified, the resources aren't peered with any network.
- project String
- reservedIp List<String>Ranges 
- Optional. A list of names for the reserved IP ranges under the VPC network that can be used for this persistent resource. If set, we will deploy the persistent resource within the provided IP ranges. Otherwise, the persistent resource is deployed to any IP ranges under the provided VPC network. Example: ['vertex-ai-ip-range'].
- resourceRuntime Property MapSpec 
- Optional. Persistent Resource runtime spec. For example, used for Ray cluster configuration.
Outputs
All input properties are implicitly available as output properties. Additionally, the PersistentResource resource produces the following output properties:
- CreateTime string
- Time when the PersistentResource was created.
- Error
Pulumi.Google Native. Aiplatform. V1Beta1. Outputs. Google Rpc Status Response 
- Only populated when persistent resource's state is STOPPINGorERROR.
- Id string
- The provider-assigned unique ID for this managed resource.
- ResourceRuntime Pulumi.Google Native. Aiplatform. V1Beta1. Outputs. Google Cloud Aiplatform V1beta1Resource Runtime Response 
- Runtime information of the Persistent Resource.
- StartTime string
- Time when the PersistentResource for the first time entered the RUNNINGstate.
- State string
- The detailed state of a Study.
- UpdateTime string
- Time when the PersistentResource was most recently updated.
- CreateTime string
- Time when the PersistentResource was created.
- Error
GoogleRpc Status Response 
- Only populated when persistent resource's state is STOPPINGorERROR.
- Id string
- The provider-assigned unique ID for this managed resource.
- ResourceRuntime GoogleCloud Aiplatform V1beta1Resource Runtime Response 
- Runtime information of the Persistent Resource.
- StartTime string
- Time when the PersistentResource for the first time entered the RUNNINGstate.
- State string
- The detailed state of a Study.
- UpdateTime string
- Time when the PersistentResource was most recently updated.
- createTime String
- Time when the PersistentResource was created.
- error
GoogleRpc Status Response 
- Only populated when persistent resource's state is STOPPINGorERROR.
- id String
- The provider-assigned unique ID for this managed resource.
- resourceRuntime GoogleCloud Aiplatform V1beta1Resource Runtime Response 
- Runtime information of the Persistent Resource.
- startTime String
- Time when the PersistentResource for the first time entered the RUNNINGstate.
- state String
- The detailed state of a Study.
- updateTime String
- Time when the PersistentResource was most recently updated.
- createTime string
- Time when the PersistentResource was created.
- error
GoogleRpc Status Response 
- Only populated when persistent resource's state is STOPPINGorERROR.
- id string
- The provider-assigned unique ID for this managed resource.
- resourceRuntime GoogleCloud Aiplatform V1beta1Resource Runtime Response 
- Runtime information of the Persistent Resource.
- startTime string
- Time when the PersistentResource for the first time entered the RUNNINGstate.
- state string
- The detailed state of a Study.
- updateTime string
- Time when the PersistentResource was most recently updated.
- create_time str
- Time when the PersistentResource was created.
- error
GoogleRpc Status Response 
- Only populated when persistent resource's state is STOPPINGorERROR.
- id str
- The provider-assigned unique ID for this managed resource.
- resource_runtime GoogleCloud Aiplatform V1beta1Resource Runtime Response 
- Runtime information of the Persistent Resource.
- start_time str
- Time when the PersistentResource for the first time entered the RUNNINGstate.
- state str
- The detailed state of a Study.
- update_time str
- Time when the PersistentResource was most recently updated.
- createTime String
- Time when the PersistentResource was created.
- error Property Map
- Only populated when persistent resource's state is STOPPINGorERROR.
- id String
- The provider-assigned unique ID for this managed resource.
- resourceRuntime Property Map
- Runtime information of the Persistent Resource.
- startTime String
- Time when the PersistentResource for the first time entered the RUNNINGstate.
- state String
- The detailed state of a Study.
- updateTime String
- Time when the PersistentResource was most recently updated.
Supporting Types
GoogleCloudAiplatformV1beta1DiskSpec, GoogleCloudAiplatformV1beta1DiskSpecArgs          
- BootDisk intSize Gb 
- Size in GB of the boot disk (default is 100GB).
- BootDisk stringType 
- Type of the boot disk (default is "pd-ssd"). Valid values: "pd-ssd" (Persistent Disk Solid State Drive) or "pd-standard" (Persistent Disk Hard Disk Drive).
- BootDisk intSize Gb 
- Size in GB of the boot disk (default is 100GB).
- BootDisk stringType 
- Type of the boot disk (default is "pd-ssd"). Valid values: "pd-ssd" (Persistent Disk Solid State Drive) or "pd-standard" (Persistent Disk Hard Disk Drive).
- bootDisk IntegerSize Gb 
- Size in GB of the boot disk (default is 100GB).
- bootDisk StringType 
- Type of the boot disk (default is "pd-ssd"). Valid values: "pd-ssd" (Persistent Disk Solid State Drive) or "pd-standard" (Persistent Disk Hard Disk Drive).
- bootDisk numberSize Gb 
- Size in GB of the boot disk (default is 100GB).
- bootDisk stringType 
- Type of the boot disk (default is "pd-ssd"). Valid values: "pd-ssd" (Persistent Disk Solid State Drive) or "pd-standard" (Persistent Disk Hard Disk Drive).
- boot_disk_ intsize_ gb 
- Size in GB of the boot disk (default is 100GB).
- boot_disk_ strtype 
- Type of the boot disk (default is "pd-ssd"). Valid values: "pd-ssd" (Persistent Disk Solid State Drive) or "pd-standard" (Persistent Disk Hard Disk Drive).
- bootDisk NumberSize Gb 
- Size in GB of the boot disk (default is 100GB).
- bootDisk StringType 
- Type of the boot disk (default is "pd-ssd"). Valid values: "pd-ssd" (Persistent Disk Solid State Drive) or "pd-standard" (Persistent Disk Hard Disk Drive).
GoogleCloudAiplatformV1beta1DiskSpecResponse, GoogleCloudAiplatformV1beta1DiskSpecResponseArgs            
- BootDisk intSize Gb 
- Size in GB of the boot disk (default is 100GB).
- BootDisk stringType 
- Type of the boot disk (default is "pd-ssd"). Valid values: "pd-ssd" (Persistent Disk Solid State Drive) or "pd-standard" (Persistent Disk Hard Disk Drive).
- BootDisk intSize Gb 
- Size in GB of the boot disk (default is 100GB).
- BootDisk stringType 
- Type of the boot disk (default is "pd-ssd"). Valid values: "pd-ssd" (Persistent Disk Solid State Drive) or "pd-standard" (Persistent Disk Hard Disk Drive).
- bootDisk IntegerSize Gb 
- Size in GB of the boot disk (default is 100GB).
- bootDisk StringType 
- Type of the boot disk (default is "pd-ssd"). Valid values: "pd-ssd" (Persistent Disk Solid State Drive) or "pd-standard" (Persistent Disk Hard Disk Drive).
- bootDisk numberSize Gb 
- Size in GB of the boot disk (default is 100GB).
- bootDisk stringType 
- Type of the boot disk (default is "pd-ssd"). Valid values: "pd-ssd" (Persistent Disk Solid State Drive) or "pd-standard" (Persistent Disk Hard Disk Drive).
- boot_disk_ intsize_ gb 
- Size in GB of the boot disk (default is 100GB).
- boot_disk_ strtype 
- Type of the boot disk (default is "pd-ssd"). Valid values: "pd-ssd" (Persistent Disk Solid State Drive) or "pd-standard" (Persistent Disk Hard Disk Drive).
- bootDisk NumberSize Gb 
- Size in GB of the boot disk (default is 100GB).
- bootDisk StringType 
- Type of the boot disk (default is "pd-ssd"). Valid values: "pd-ssd" (Persistent Disk Solid State Drive) or "pd-standard" (Persistent Disk Hard Disk Drive).
GoogleCloudAiplatformV1beta1EncryptionSpec, GoogleCloudAiplatformV1beta1EncryptionSpecArgs          
- KmsKey stringName 
- The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key. The key needs to be in the same region as where the compute resource is created.
- KmsKey stringName 
- The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key. The key needs to be in the same region as where the compute resource is created.
- kmsKey StringName 
- The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key. The key needs to be in the same region as where the compute resource is created.
- kmsKey stringName 
- The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key. The key needs to be in the same region as where the compute resource is created.
- kms_key_ strname 
- The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key. The key needs to be in the same region as where the compute resource is created.
- kmsKey StringName 
- The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key. The key needs to be in the same region as where the compute resource is created.
GoogleCloudAiplatformV1beta1EncryptionSpecResponse, GoogleCloudAiplatformV1beta1EncryptionSpecResponseArgs            
- KmsKey stringName 
- The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key. The key needs to be in the same region as where the compute resource is created.
- KmsKey stringName 
- The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key. The key needs to be in the same region as where the compute resource is created.
- kmsKey StringName 
- The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key. The key needs to be in the same region as where the compute resource is created.
- kmsKey stringName 
- The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key. The key needs to be in the same region as where the compute resource is created.
- kms_key_ strname 
- The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key. The key needs to be in the same region as where the compute resource is created.
- kmsKey StringName 
- The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key. The key needs to be in the same region as where the compute resource is created.
GoogleCloudAiplatformV1beta1MachineSpec, GoogleCloudAiplatformV1beta1MachineSpecArgs          
- AcceleratorCount int
- The number of accelerators to attach to the machine.
- AcceleratorType Pulumi.Google Native. Aiplatform. V1Beta1. Google Cloud Aiplatform V1beta1Machine Spec Accelerator Type 
- Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
- MachineType string
- Immutable. The type of the machine. See the list of machine types supported for prediction See the list of machine types supported for custom training. For DeployedModel this field is optional, and the default value is n1-standard-2. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
- TpuTopology string
- Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: "2x2x1").
- AcceleratorCount int
- The number of accelerators to attach to the machine.
- AcceleratorType GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type 
- Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
- MachineType string
- Immutable. The type of the machine. See the list of machine types supported for prediction See the list of machine types supported for custom training. For DeployedModel this field is optional, and the default value is n1-standard-2. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
- TpuTopology string
- Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: "2x2x1").
- acceleratorCount Integer
- The number of accelerators to attach to the machine.
- acceleratorType GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type 
- Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
- machineType String
- Immutable. The type of the machine. See the list of machine types supported for prediction See the list of machine types supported for custom training. For DeployedModel this field is optional, and the default value is n1-standard-2. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
- tpuTopology String
- Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: "2x2x1").
- acceleratorCount number
- The number of accelerators to attach to the machine.
- acceleratorType GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type 
- Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
- machineType string
- Immutable. The type of the machine. See the list of machine types supported for prediction See the list of machine types supported for custom training. For DeployedModel this field is optional, and the default value is n1-standard-2. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
- tpuTopology string
- Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: "2x2x1").
- accelerator_count int
- The number of accelerators to attach to the machine.
- accelerator_type GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type 
- Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
- machine_type str
- Immutable. The type of the machine. See the list of machine types supported for prediction See the list of machine types supported for custom training. For DeployedModel this field is optional, and the default value is n1-standard-2. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
- tpu_topology str
- Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: "2x2x1").
- acceleratorCount Number
- The number of accelerators to attach to the machine.
- acceleratorType "ACCELERATOR_TYPE_UNSPECIFIED" | "NVIDIA_TESLA_K80" | "NVIDIA_TESLA_P100" | "NVIDIA_TESLA_V100" | "NVIDIA_TESLA_P4" | "NVIDIA_TESLA_T4" | "NVIDIA_TESLA_A100" | "NVIDIA_A100_80GB" | "NVIDIA_L4" | "NVIDIA_H100_80GB" | "TPU_V2" | "TPU_V3" | "TPU_V4_POD" | "TPU_V5_LITEPOD"
- Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
- machineType String
- Immutable. The type of the machine. See the list of machine types supported for prediction See the list of machine types supported for custom training. For DeployedModel this field is optional, and the default value is n1-standard-2. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
- tpuTopology String
- Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: "2x2x1").
GoogleCloudAiplatformV1beta1MachineSpecAcceleratorType, GoogleCloudAiplatformV1beta1MachineSpecAcceleratorTypeArgs              
- AcceleratorType Unspecified 
- ACCELERATOR_TYPE_UNSPECIFIEDUnspecified accelerator type, which means no accelerator.
- NvidiaTesla K80 
- NVIDIA_TESLA_K80Nvidia Tesla K80 GPU.
- NvidiaTesla P100 
- NVIDIA_TESLA_P100Nvidia Tesla P100 GPU.
- NvidiaTesla V100 
- NVIDIA_TESLA_V100Nvidia Tesla V100 GPU.
- NvidiaTesla P4 
- NVIDIA_TESLA_P4Nvidia Tesla P4 GPU.
- NvidiaTesla T4 
- NVIDIA_TESLA_T4Nvidia Tesla T4 GPU.
- NvidiaTesla A100 
- NVIDIA_TESLA_A100Nvidia Tesla A100 GPU.
- NvidiaA10080gb 
- NVIDIA_A100_80GBNvidia A100 80GB GPU.
- NvidiaL4 
- NVIDIA_L4Nvidia L4 GPU.
- NvidiaH10080gb 
- NVIDIA_H100_80GBNvidia H100 80Gb GPU.
- TpuV2 
- TPU_V2TPU v2.
- TpuV3 
- TPU_V3TPU v3.
- TpuV4Pod 
- TPU_V4_PODTPU v4.
- TpuV5Litepod 
- TPU_V5_LITEPODTPU v5.
- GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type Accelerator Type Unspecified 
- ACCELERATOR_TYPE_UNSPECIFIEDUnspecified accelerator type, which means no accelerator.
- GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type Nvidia Tesla K80 
- NVIDIA_TESLA_K80Nvidia Tesla K80 GPU.
- GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type Nvidia Tesla P100 
- NVIDIA_TESLA_P100Nvidia Tesla P100 GPU.
- GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type Nvidia Tesla V100 
- NVIDIA_TESLA_V100Nvidia Tesla V100 GPU.
- GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type Nvidia Tesla P4 
- NVIDIA_TESLA_P4Nvidia Tesla P4 GPU.
- GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type Nvidia Tesla T4 
- NVIDIA_TESLA_T4Nvidia Tesla T4 GPU.
- GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type Nvidia Tesla A100 
- NVIDIA_TESLA_A100Nvidia Tesla A100 GPU.
- GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type Nvidia A10080gb 
- NVIDIA_A100_80GBNvidia A100 80GB GPU.
- GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type Nvidia L4 
- NVIDIA_L4Nvidia L4 GPU.
- GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type Nvidia H10080gb 
- NVIDIA_H100_80GBNvidia H100 80Gb GPU.
- GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type Tpu V2 
- TPU_V2TPU v2.
- GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type Tpu V3 
- TPU_V3TPU v3.
- GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type Tpu V4Pod 
- TPU_V4_PODTPU v4.
- GoogleCloud Aiplatform V1beta1Machine Spec Accelerator Type Tpu V5Litepod 
- TPU_V5_LITEPODTPU v5.
- AcceleratorType Unspecified 
- ACCELERATOR_TYPE_UNSPECIFIEDUnspecified accelerator type, which means no accelerator.
- NvidiaTesla K80 
- NVIDIA_TESLA_K80Nvidia Tesla K80 GPU.
- NvidiaTesla P100 
- NVIDIA_TESLA_P100Nvidia Tesla P100 GPU.
- NvidiaTesla V100 
- NVIDIA_TESLA_V100Nvidia Tesla V100 GPU.
- NvidiaTesla P4 
- NVIDIA_TESLA_P4Nvidia Tesla P4 GPU.
- NvidiaTesla T4 
- NVIDIA_TESLA_T4Nvidia Tesla T4 GPU.
- NvidiaTesla A100 
- NVIDIA_TESLA_A100Nvidia Tesla A100 GPU.
- NvidiaA10080gb 
- NVIDIA_A100_80GBNvidia A100 80GB GPU.
- NvidiaL4 
- NVIDIA_L4Nvidia L4 GPU.
- NvidiaH10080gb 
- NVIDIA_H100_80GBNvidia H100 80Gb GPU.
- TpuV2 
- TPU_V2TPU v2.
- TpuV3 
- TPU_V3TPU v3.
- TpuV4Pod 
- TPU_V4_PODTPU v4.
- TpuV5Litepod 
- TPU_V5_LITEPODTPU v5.
- AcceleratorType Unspecified 
- ACCELERATOR_TYPE_UNSPECIFIEDUnspecified accelerator type, which means no accelerator.
- NvidiaTesla K80 
- NVIDIA_TESLA_K80Nvidia Tesla K80 GPU.
- NvidiaTesla P100 
- NVIDIA_TESLA_P100Nvidia Tesla P100 GPU.
- NvidiaTesla V100 
- NVIDIA_TESLA_V100Nvidia Tesla V100 GPU.
- NvidiaTesla P4 
- NVIDIA_TESLA_P4Nvidia Tesla P4 GPU.
- NvidiaTesla T4 
- NVIDIA_TESLA_T4Nvidia Tesla T4 GPU.
- NvidiaTesla A100 
- NVIDIA_TESLA_A100Nvidia Tesla A100 GPU.
- NvidiaA10080gb 
- NVIDIA_A100_80GBNvidia A100 80GB GPU.
- NvidiaL4 
- NVIDIA_L4Nvidia L4 GPU.
- NvidiaH10080gb 
- NVIDIA_H100_80GBNvidia H100 80Gb GPU.
- TpuV2 
- TPU_V2TPU v2.
- TpuV3 
- TPU_V3TPU v3.
- TpuV4Pod 
- TPU_V4_PODTPU v4.
- TpuV5Litepod 
- TPU_V5_LITEPODTPU v5.
- ACCELERATOR_TYPE_UNSPECIFIED
- ACCELERATOR_TYPE_UNSPECIFIEDUnspecified accelerator type, which means no accelerator.
- NVIDIA_TESLA_K80
- NVIDIA_TESLA_K80Nvidia Tesla K80 GPU.
- NVIDIA_TESLA_P100
- NVIDIA_TESLA_P100Nvidia Tesla P100 GPU.
- NVIDIA_TESLA_V100
- NVIDIA_TESLA_V100Nvidia Tesla V100 GPU.
- NVIDIA_TESLA_P4
- NVIDIA_TESLA_P4Nvidia Tesla P4 GPU.
- NVIDIA_TESLA_T4
- NVIDIA_TESLA_T4Nvidia Tesla T4 GPU.
- NVIDIA_TESLA_A100
- NVIDIA_TESLA_A100Nvidia Tesla A100 GPU.
- NVIDIA_A10080GB
- NVIDIA_A100_80GBNvidia A100 80GB GPU.
- NVIDIA_L4
- NVIDIA_L4Nvidia L4 GPU.
- NVIDIA_H10080GB
- NVIDIA_H100_80GBNvidia H100 80Gb GPU.
- TPU_V2
- TPU_V2TPU v2.
- TPU_V3
- TPU_V3TPU v3.
- TPU_V4_POD
- TPU_V4_PODTPU v4.
- TPU_V5_LITEPOD
- TPU_V5_LITEPODTPU v5.
- "ACCELERATOR_TYPE_UNSPECIFIED"
- ACCELERATOR_TYPE_UNSPECIFIEDUnspecified accelerator type, which means no accelerator.
- "NVIDIA_TESLA_K80"
- NVIDIA_TESLA_K80Nvidia Tesla K80 GPU.
- "NVIDIA_TESLA_P100"
- NVIDIA_TESLA_P100Nvidia Tesla P100 GPU.
- "NVIDIA_TESLA_V100"
- NVIDIA_TESLA_V100Nvidia Tesla V100 GPU.
- "NVIDIA_TESLA_P4"
- NVIDIA_TESLA_P4Nvidia Tesla P4 GPU.
- "NVIDIA_TESLA_T4"
- NVIDIA_TESLA_T4Nvidia Tesla T4 GPU.
- "NVIDIA_TESLA_A100"
- NVIDIA_TESLA_A100Nvidia Tesla A100 GPU.
- "NVIDIA_A100_80GB"
- NVIDIA_A100_80GBNvidia A100 80GB GPU.
- "NVIDIA_L4"
- NVIDIA_L4Nvidia L4 GPU.
- "NVIDIA_H100_80GB"
- NVIDIA_H100_80GBNvidia H100 80Gb GPU.
- "TPU_V2"
- TPU_V2TPU v2.
- "TPU_V3"
- TPU_V3TPU v3.
- "TPU_V4_POD"
- TPU_V4_PODTPU v4.
- "TPU_V5_LITEPOD"
- TPU_V5_LITEPODTPU v5.
GoogleCloudAiplatformV1beta1MachineSpecResponse, GoogleCloudAiplatformV1beta1MachineSpecResponseArgs            
- AcceleratorCount int
- The number of accelerators to attach to the machine.
- AcceleratorType string
- Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
- MachineType string
- Immutable. The type of the machine. See the list of machine types supported for prediction See the list of machine types supported for custom training. For DeployedModel this field is optional, and the default value is n1-standard-2. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
- TpuTopology string
- Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: "2x2x1").
- AcceleratorCount int
- The number of accelerators to attach to the machine.
- AcceleratorType string
- Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
- MachineType string
- Immutable. The type of the machine. See the list of machine types supported for prediction See the list of machine types supported for custom training. For DeployedModel this field is optional, and the default value is n1-standard-2. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
- TpuTopology string
- Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: "2x2x1").
- acceleratorCount Integer
- The number of accelerators to attach to the machine.
- acceleratorType String
- Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
- machineType String
- Immutable. The type of the machine. See the list of machine types supported for prediction See the list of machine types supported for custom training. For DeployedModel this field is optional, and the default value is n1-standard-2. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
- tpuTopology String
- Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: "2x2x1").
- acceleratorCount number
- The number of accelerators to attach to the machine.
- acceleratorType string
- Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
- machineType string
- Immutable. The type of the machine. See the list of machine types supported for prediction See the list of machine types supported for custom training. For DeployedModel this field is optional, and the default value is n1-standard-2. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
- tpuTopology string
- Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: "2x2x1").
- accelerator_count int
- The number of accelerators to attach to the machine.
- accelerator_type str
- Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
- machine_type str
- Immutable. The type of the machine. See the list of machine types supported for prediction See the list of machine types supported for custom training. For DeployedModel this field is optional, and the default value is n1-standard-2. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
- tpu_topology str
- Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: "2x2x1").
- acceleratorCount Number
- The number of accelerators to attach to the machine.
- acceleratorType String
- Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
- machineType String
- Immutable. The type of the machine. See the list of machine types supported for prediction See the list of machine types supported for custom training. For DeployedModel this field is optional, and the default value is n1-standard-2. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
- tpuTopology String
- Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: "2x2x1").
GoogleCloudAiplatformV1beta1RaySpec, GoogleCloudAiplatformV1beta1RaySpecArgs          
- HeadNode stringResource Pool Id 
- Optional. This will be used to indicate which resource pool will serve as the Ray head node(the first node within that pool). Will use the machine from the first workerpool as the head node by default if this field isn't set.
- ImageUri string
- Optional. Default image for user to choose a preferred ML framework (for example, TensorFlow or Pytorch) by choosing from Vertex prebuilt images. Either this or the resource_pool_images is required. Use this field if you need all the resource pools to have the same Ray image. Otherwise, use the {@code resource_pool_images} field.
- ResourcePool Dictionary<string, string>Images 
- Optional. Required if image_uri isn't set. A map of resource_pool_id to prebuild Ray image if user need to use different images for different head/worker pools. This map needs to cover all the resource pool ids. Example: { "ray_head_node_pool": "head image" "ray_worker_node_pool1": "worker image" "ray_worker_node_pool2": "another worker image" }
- HeadNode stringResource Pool Id 
- Optional. This will be used to indicate which resource pool will serve as the Ray head node(the first node within that pool). Will use the machine from the first workerpool as the head node by default if this field isn't set.
- ImageUri string
- Optional. Default image for user to choose a preferred ML framework (for example, TensorFlow or Pytorch) by choosing from Vertex prebuilt images. Either this or the resource_pool_images is required. Use this field if you need all the resource pools to have the same Ray image. Otherwise, use the {@code resource_pool_images} field.
- ResourcePool map[string]stringImages 
- Optional. Required if image_uri isn't set. A map of resource_pool_id to prebuild Ray image if user need to use different images for different head/worker pools. This map needs to cover all the resource pool ids. Example: { "ray_head_node_pool": "head image" "ray_worker_node_pool1": "worker image" "ray_worker_node_pool2": "another worker image" }
- headNode StringResource Pool Id 
- Optional. This will be used to indicate which resource pool will serve as the Ray head node(the first node within that pool). Will use the machine from the first workerpool as the head node by default if this field isn't set.
- imageUri String
- Optional. Default image for user to choose a preferred ML framework (for example, TensorFlow or Pytorch) by choosing from Vertex prebuilt images. Either this or the resource_pool_images is required. Use this field if you need all the resource pools to have the same Ray image. Otherwise, use the {@code resource_pool_images} field.
- resourcePool Map<String,String>Images 
- Optional. Required if image_uri isn't set. A map of resource_pool_id to prebuild Ray image if user need to use different images for different head/worker pools. This map needs to cover all the resource pool ids. Example: { "ray_head_node_pool": "head image" "ray_worker_node_pool1": "worker image" "ray_worker_node_pool2": "another worker image" }
- headNode stringResource Pool Id 
- Optional. This will be used to indicate which resource pool will serve as the Ray head node(the first node within that pool). Will use the machine from the first workerpool as the head node by default if this field isn't set.
- imageUri string
- Optional. Default image for user to choose a preferred ML framework (for example, TensorFlow or Pytorch) by choosing from Vertex prebuilt images. Either this or the resource_pool_images is required. Use this field if you need all the resource pools to have the same Ray image. Otherwise, use the {@code resource_pool_images} field.
- resourcePool {[key: string]: string}Images 
- Optional. Required if image_uri isn't set. A map of resource_pool_id to prebuild Ray image if user need to use different images for different head/worker pools. This map needs to cover all the resource pool ids. Example: { "ray_head_node_pool": "head image" "ray_worker_node_pool1": "worker image" "ray_worker_node_pool2": "another worker image" }
- head_node_ strresource_ pool_ id 
- Optional. This will be used to indicate which resource pool will serve as the Ray head node(the first node within that pool). Will use the machine from the first workerpool as the head node by default if this field isn't set.
- image_uri str
- Optional. Default image for user to choose a preferred ML framework (for example, TensorFlow or Pytorch) by choosing from Vertex prebuilt images. Either this or the resource_pool_images is required. Use this field if you need all the resource pools to have the same Ray image. Otherwise, use the {@code resource_pool_images} field.
- resource_pool_ Mapping[str, str]images 
- Optional. Required if image_uri isn't set. A map of resource_pool_id to prebuild Ray image if user need to use different images for different head/worker pools. This map needs to cover all the resource pool ids. Example: { "ray_head_node_pool": "head image" "ray_worker_node_pool1": "worker image" "ray_worker_node_pool2": "another worker image" }
- headNode StringResource Pool Id 
- Optional. This will be used to indicate which resource pool will serve as the Ray head node(the first node within that pool). Will use the machine from the first workerpool as the head node by default if this field isn't set.
- imageUri String
- Optional. Default image for user to choose a preferred ML framework (for example, TensorFlow or Pytorch) by choosing from Vertex prebuilt images. Either this or the resource_pool_images is required. Use this field if you need all the resource pools to have the same Ray image. Otherwise, use the {@code resource_pool_images} field.
- resourcePool Map<String>Images 
- Optional. Required if image_uri isn't set. A map of resource_pool_id to prebuild Ray image if user need to use different images for different head/worker pools. This map needs to cover all the resource pool ids. Example: { "ray_head_node_pool": "head image" "ray_worker_node_pool1": "worker image" "ray_worker_node_pool2": "another worker image" }
GoogleCloudAiplatformV1beta1RaySpecResponse, GoogleCloudAiplatformV1beta1RaySpecResponseArgs            
- HeadNode stringResource Pool Id 
- Optional. This will be used to indicate which resource pool will serve as the Ray head node(the first node within that pool). Will use the machine from the first workerpool as the head node by default if this field isn't set.
- ImageUri string
- Optional. Default image for user to choose a preferred ML framework (for example, TensorFlow or Pytorch) by choosing from Vertex prebuilt images. Either this or the resource_pool_images is required. Use this field if you need all the resource pools to have the same Ray image. Otherwise, use the {@code resource_pool_images} field.
- ResourcePool Dictionary<string, string>Images 
- Optional. Required if image_uri isn't set. A map of resource_pool_id to prebuild Ray image if user need to use different images for different head/worker pools. This map needs to cover all the resource pool ids. Example: { "ray_head_node_pool": "head image" "ray_worker_node_pool1": "worker image" "ray_worker_node_pool2": "another worker image" }
- HeadNode stringResource Pool Id 
- Optional. This will be used to indicate which resource pool will serve as the Ray head node(the first node within that pool). Will use the machine from the first workerpool as the head node by default if this field isn't set.
- ImageUri string
- Optional. Default image for user to choose a preferred ML framework (for example, TensorFlow or Pytorch) by choosing from Vertex prebuilt images. Either this or the resource_pool_images is required. Use this field if you need all the resource pools to have the same Ray image. Otherwise, use the {@code resource_pool_images} field.
- ResourcePool map[string]stringImages 
- Optional. Required if image_uri isn't set. A map of resource_pool_id to prebuild Ray image if user need to use different images for different head/worker pools. This map needs to cover all the resource pool ids. Example: { "ray_head_node_pool": "head image" "ray_worker_node_pool1": "worker image" "ray_worker_node_pool2": "another worker image" }
- headNode StringResource Pool Id 
- Optional. This will be used to indicate which resource pool will serve as the Ray head node(the first node within that pool). Will use the machine from the first workerpool as the head node by default if this field isn't set.
- imageUri String
- Optional. Default image for user to choose a preferred ML framework (for example, TensorFlow or Pytorch) by choosing from Vertex prebuilt images. Either this or the resource_pool_images is required. Use this field if you need all the resource pools to have the same Ray image. Otherwise, use the {@code resource_pool_images} field.
- resourcePool Map<String,String>Images 
- Optional. Required if image_uri isn't set. A map of resource_pool_id to prebuild Ray image if user need to use different images for different head/worker pools. This map needs to cover all the resource pool ids. Example: { "ray_head_node_pool": "head image" "ray_worker_node_pool1": "worker image" "ray_worker_node_pool2": "another worker image" }
- headNode stringResource Pool Id 
- Optional. This will be used to indicate which resource pool will serve as the Ray head node(the first node within that pool). Will use the machine from the first workerpool as the head node by default if this field isn't set.
- imageUri string
- Optional. Default image for user to choose a preferred ML framework (for example, TensorFlow or Pytorch) by choosing from Vertex prebuilt images. Either this or the resource_pool_images is required. Use this field if you need all the resource pools to have the same Ray image. Otherwise, use the {@code resource_pool_images} field.
- resourcePool {[key: string]: string}Images 
- Optional. Required if image_uri isn't set. A map of resource_pool_id to prebuild Ray image if user need to use different images for different head/worker pools. This map needs to cover all the resource pool ids. Example: { "ray_head_node_pool": "head image" "ray_worker_node_pool1": "worker image" "ray_worker_node_pool2": "another worker image" }
- head_node_ strresource_ pool_ id 
- Optional. This will be used to indicate which resource pool will serve as the Ray head node(the first node within that pool). Will use the machine from the first workerpool as the head node by default if this field isn't set.
- image_uri str
- Optional. Default image for user to choose a preferred ML framework (for example, TensorFlow or Pytorch) by choosing from Vertex prebuilt images. Either this or the resource_pool_images is required. Use this field if you need all the resource pools to have the same Ray image. Otherwise, use the {@code resource_pool_images} field.
- resource_pool_ Mapping[str, str]images 
- Optional. Required if image_uri isn't set. A map of resource_pool_id to prebuild Ray image if user need to use different images for different head/worker pools. This map needs to cover all the resource pool ids. Example: { "ray_head_node_pool": "head image" "ray_worker_node_pool1": "worker image" "ray_worker_node_pool2": "another worker image" }
- headNode StringResource Pool Id 
- Optional. This will be used to indicate which resource pool will serve as the Ray head node(the first node within that pool). Will use the machine from the first workerpool as the head node by default if this field isn't set.
- imageUri String
- Optional. Default image for user to choose a preferred ML framework (for example, TensorFlow or Pytorch) by choosing from Vertex prebuilt images. Either this or the resource_pool_images is required. Use this field if you need all the resource pools to have the same Ray image. Otherwise, use the {@code resource_pool_images} field.
- resourcePool Map<String>Images 
- Optional. Required if image_uri isn't set. A map of resource_pool_id to prebuild Ray image if user need to use different images for different head/worker pools. This map needs to cover all the resource pool ids. Example: { "ray_head_node_pool": "head image" "ray_worker_node_pool1": "worker image" "ray_worker_node_pool2": "another worker image" }
GoogleCloudAiplatformV1beta1ResourcePool, GoogleCloudAiplatformV1beta1ResourcePoolArgs          
- MachineSpec Pulumi.Google Native. Aiplatform. V1Beta1. Inputs. Google Cloud Aiplatform V1beta1Machine Spec 
- Immutable. The specification of a single machine.
- AutoscalingSpec Pulumi.Google Native. Aiplatform. V1Beta1. Inputs. Google Cloud Aiplatform V1beta1Resource Pool Autoscaling Spec 
- Optional. Optional spec to configure GKE autoscaling
- DiskSpec Pulumi.Google Native. Aiplatform. V1Beta1. Inputs. Google Cloud Aiplatform V1beta1Disk Spec 
- Optional. Disk spec for the machine in this node pool.
- Id string
- Immutable. The unique ID in a PersistentResource for referring to this resource pool. User can specify it if necessary. Otherwise, it's generated automatically.
- ReplicaCount string
- Optional. The total number of machines to use for this resource pool.
- MachineSpec GoogleCloud Aiplatform V1beta1Machine Spec 
- Immutable. The specification of a single machine.
- AutoscalingSpec GoogleCloud Aiplatform V1beta1Resource Pool Autoscaling Spec 
- Optional. Optional spec to configure GKE autoscaling
- DiskSpec GoogleCloud Aiplatform V1beta1Disk Spec 
- Optional. Disk spec for the machine in this node pool.
- Id string
- Immutable. The unique ID in a PersistentResource for referring to this resource pool. User can specify it if necessary. Otherwise, it's generated automatically.
- ReplicaCount string
- Optional. The total number of machines to use for this resource pool.
- machineSpec GoogleCloud Aiplatform V1beta1Machine Spec 
- Immutable. The specification of a single machine.
- autoscalingSpec GoogleCloud Aiplatform V1beta1Resource Pool Autoscaling Spec 
- Optional. Optional spec to configure GKE autoscaling
- diskSpec GoogleCloud Aiplatform V1beta1Disk Spec 
- Optional. Disk spec for the machine in this node pool.
- id String
- Immutable. The unique ID in a PersistentResource for referring to this resource pool. User can specify it if necessary. Otherwise, it's generated automatically.
- replicaCount String
- Optional. The total number of machines to use for this resource pool.
- machineSpec GoogleCloud Aiplatform V1beta1Machine Spec 
- Immutable. The specification of a single machine.
- autoscalingSpec GoogleCloud Aiplatform V1beta1Resource Pool Autoscaling Spec 
- Optional. Optional spec to configure GKE autoscaling
- diskSpec GoogleCloud Aiplatform V1beta1Disk Spec 
- Optional. Disk spec for the machine in this node pool.
- id string
- Immutable. The unique ID in a PersistentResource for referring to this resource pool. User can specify it if necessary. Otherwise, it's generated automatically.
- replicaCount string
- Optional. The total number of machines to use for this resource pool.
- machine_spec GoogleCloud Aiplatform V1beta1Machine Spec 
- Immutable. The specification of a single machine.
- autoscaling_spec GoogleCloud Aiplatform V1beta1Resource Pool Autoscaling Spec 
- Optional. Optional spec to configure GKE autoscaling
- disk_spec GoogleCloud Aiplatform V1beta1Disk Spec 
- Optional. Disk spec for the machine in this node pool.
- id str
- Immutable. The unique ID in a PersistentResource for referring to this resource pool. User can specify it if necessary. Otherwise, it's generated automatically.
- replica_count str
- Optional. The total number of machines to use for this resource pool.
- machineSpec Property Map
- Immutable. The specification of a single machine.
- autoscalingSpec Property Map
- Optional. Optional spec to configure GKE autoscaling
- diskSpec Property Map
- Optional. Disk spec for the machine in this node pool.
- id String
- Immutable. The unique ID in a PersistentResource for referring to this resource pool. User can specify it if necessary. Otherwise, it's generated automatically.
- replicaCount String
- Optional. The total number of machines to use for this resource pool.
GoogleCloudAiplatformV1beta1ResourcePoolAutoscalingSpec, GoogleCloudAiplatformV1beta1ResourcePoolAutoscalingSpecArgs              
- MaxReplica stringCount 
- Optional. max replicas in the node pool, must be ≥ replica_count and > min_replica_count or will throw error
- MinReplica stringCount 
- Optional. min replicas in the node pool, must be ≤ replica_count and < max_replica_count or will throw error
- MaxReplica stringCount 
- Optional. max replicas in the node pool, must be ≥ replica_count and > min_replica_count or will throw error
- MinReplica stringCount 
- Optional. min replicas in the node pool, must be ≤ replica_count and < max_replica_count or will throw error
- maxReplica StringCount 
- Optional. max replicas in the node pool, must be ≥ replica_count and > min_replica_count or will throw error
- minReplica StringCount 
- Optional. min replicas in the node pool, must be ≤ replica_count and < max_replica_count or will throw error
- maxReplica stringCount 
- Optional. max replicas in the node pool, must be ≥ replica_count and > min_replica_count or will throw error
- minReplica stringCount 
- Optional. min replicas in the node pool, must be ≤ replica_count and < max_replica_count or will throw error
- max_replica_ strcount 
- Optional. max replicas in the node pool, must be ≥ replica_count and > min_replica_count or will throw error
- min_replica_ strcount 
- Optional. min replicas in the node pool, must be ≤ replica_count and < max_replica_count or will throw error
- maxReplica StringCount 
- Optional. max replicas in the node pool, must be ≥ replica_count and > min_replica_count or will throw error
- minReplica StringCount 
- Optional. min replicas in the node pool, must be ≤ replica_count and < max_replica_count or will throw error
GoogleCloudAiplatformV1beta1ResourcePoolAutoscalingSpecResponse, GoogleCloudAiplatformV1beta1ResourcePoolAutoscalingSpecResponseArgs                
- MaxReplica stringCount 
- Optional. max replicas in the node pool, must be ≥ replica_count and > min_replica_count or will throw error
- MinReplica stringCount 
- Optional. min replicas in the node pool, must be ≤ replica_count and < max_replica_count or will throw error
- MaxReplica stringCount 
- Optional. max replicas in the node pool, must be ≥ replica_count and > min_replica_count or will throw error
- MinReplica stringCount 
- Optional. min replicas in the node pool, must be ≤ replica_count and < max_replica_count or will throw error
- maxReplica StringCount 
- Optional. max replicas in the node pool, must be ≥ replica_count and > min_replica_count or will throw error
- minReplica StringCount 
- Optional. min replicas in the node pool, must be ≤ replica_count and < max_replica_count or will throw error
- maxReplica stringCount 
- Optional. max replicas in the node pool, must be ≥ replica_count and > min_replica_count or will throw error
- minReplica stringCount 
- Optional. min replicas in the node pool, must be ≤ replica_count and < max_replica_count or will throw error
- max_replica_ strcount 
- Optional. max replicas in the node pool, must be ≥ replica_count and > min_replica_count or will throw error
- min_replica_ strcount 
- Optional. min replicas in the node pool, must be ≤ replica_count and < max_replica_count or will throw error
- maxReplica StringCount 
- Optional. max replicas in the node pool, must be ≥ replica_count and > min_replica_count or will throw error
- minReplica StringCount 
- Optional. min replicas in the node pool, must be ≤ replica_count and < max_replica_count or will throw error
GoogleCloudAiplatformV1beta1ResourcePoolResponse, GoogleCloudAiplatformV1beta1ResourcePoolResponseArgs            
- AutoscalingSpec Pulumi.Google Native. Aiplatform. V1Beta1. Inputs. Google Cloud Aiplatform V1beta1Resource Pool Autoscaling Spec Response 
- Optional. Optional spec to configure GKE autoscaling
- DiskSpec Pulumi.Google Native. Aiplatform. V1Beta1. Inputs. Google Cloud Aiplatform V1beta1Disk Spec Response 
- Optional. Disk spec for the machine in this node pool.
- MachineSpec Pulumi.Google Native. Aiplatform. V1Beta1. Inputs. Google Cloud Aiplatform V1beta1Machine Spec Response 
- Immutable. The specification of a single machine.
- ReplicaCount string
- Optional. The total number of machines to use for this resource pool.
- UsedReplica stringCount 
- The number of machines currently in use by training jobs for this resource pool. Will replace idle_replica_count.
- AutoscalingSpec GoogleCloud Aiplatform V1beta1Resource Pool Autoscaling Spec Response 
- Optional. Optional spec to configure GKE autoscaling
- DiskSpec GoogleCloud Aiplatform V1beta1Disk Spec Response 
- Optional. Disk spec for the machine in this node pool.
- MachineSpec GoogleCloud Aiplatform V1beta1Machine Spec Response 
- Immutable. The specification of a single machine.
- ReplicaCount string
- Optional. The total number of machines to use for this resource pool.
- UsedReplica stringCount 
- The number of machines currently in use by training jobs for this resource pool. Will replace idle_replica_count.
- autoscalingSpec GoogleCloud Aiplatform V1beta1Resource Pool Autoscaling Spec Response 
- Optional. Optional spec to configure GKE autoscaling
- diskSpec GoogleCloud Aiplatform V1beta1Disk Spec Response 
- Optional. Disk spec for the machine in this node pool.
- machineSpec GoogleCloud Aiplatform V1beta1Machine Spec Response 
- Immutable. The specification of a single machine.
- replicaCount String
- Optional. The total number of machines to use for this resource pool.
- usedReplica StringCount 
- The number of machines currently in use by training jobs for this resource pool. Will replace idle_replica_count.
- autoscalingSpec GoogleCloud Aiplatform V1beta1Resource Pool Autoscaling Spec Response 
- Optional. Optional spec to configure GKE autoscaling
- diskSpec GoogleCloud Aiplatform V1beta1Disk Spec Response 
- Optional. Disk spec for the machine in this node pool.
- machineSpec GoogleCloud Aiplatform V1beta1Machine Spec Response 
- Immutable. The specification of a single machine.
- replicaCount string
- Optional. The total number of machines to use for this resource pool.
- usedReplica stringCount 
- The number of machines currently in use by training jobs for this resource pool. Will replace idle_replica_count.
- autoscaling_spec GoogleCloud Aiplatform V1beta1Resource Pool Autoscaling Spec Response 
- Optional. Optional spec to configure GKE autoscaling
- disk_spec GoogleCloud Aiplatform V1beta1Disk Spec Response 
- Optional. Disk spec for the machine in this node pool.
- machine_spec GoogleCloud Aiplatform V1beta1Machine Spec Response 
- Immutable. The specification of a single machine.
- replica_count str
- Optional. The total number of machines to use for this resource pool.
- used_replica_ strcount 
- The number of machines currently in use by training jobs for this resource pool. Will replace idle_replica_count.
- autoscalingSpec Property Map
- Optional. Optional spec to configure GKE autoscaling
- diskSpec Property Map
- Optional. Disk spec for the machine in this node pool.
- machineSpec Property Map
- Immutable. The specification of a single machine.
- replicaCount String
- Optional. The total number of machines to use for this resource pool.
- usedReplica StringCount 
- The number of machines currently in use by training jobs for this resource pool. Will replace idle_replica_count.
GoogleCloudAiplatformV1beta1ResourceRuntimeResponse, GoogleCloudAiplatformV1beta1ResourceRuntimeResponseArgs            
- AccessUris Dictionary<string, string>
- URIs for user to connect to the Cluster. Example: { "RAY_HEAD_NODE_INTERNAL_IP": "head-node-IP:10001" "RAY_DASHBOARD_URI": "ray-dashboard-address:8888" }
- NotebookRuntime stringTemplate 
- The resource name of NotebookRuntimeTemplate for the RoV Persistent Cluster The NotebokRuntimeTemplate is created in the same VPC (if set), and with the same Ray and Python version as the Persistent Cluster. Example: "projects/1000/locations/us-central1/notebookRuntimeTemplates/abc123"
- AccessUris map[string]string
- URIs for user to connect to the Cluster. Example: { "RAY_HEAD_NODE_INTERNAL_IP": "head-node-IP:10001" "RAY_DASHBOARD_URI": "ray-dashboard-address:8888" }
- NotebookRuntime stringTemplate 
- The resource name of NotebookRuntimeTemplate for the RoV Persistent Cluster The NotebokRuntimeTemplate is created in the same VPC (if set), and with the same Ray and Python version as the Persistent Cluster. Example: "projects/1000/locations/us-central1/notebookRuntimeTemplates/abc123"
- accessUris Map<String,String>
- URIs for user to connect to the Cluster. Example: { "RAY_HEAD_NODE_INTERNAL_IP": "head-node-IP:10001" "RAY_DASHBOARD_URI": "ray-dashboard-address:8888" }
- notebookRuntime StringTemplate 
- The resource name of NotebookRuntimeTemplate for the RoV Persistent Cluster The NotebokRuntimeTemplate is created in the same VPC (if set), and with the same Ray and Python version as the Persistent Cluster. Example: "projects/1000/locations/us-central1/notebookRuntimeTemplates/abc123"
- accessUris {[key: string]: string}
- URIs for user to connect to the Cluster. Example: { "RAY_HEAD_NODE_INTERNAL_IP": "head-node-IP:10001" "RAY_DASHBOARD_URI": "ray-dashboard-address:8888" }
- notebookRuntime stringTemplate 
- The resource name of NotebookRuntimeTemplate for the RoV Persistent Cluster The NotebokRuntimeTemplate is created in the same VPC (if set), and with the same Ray and Python version as the Persistent Cluster. Example: "projects/1000/locations/us-central1/notebookRuntimeTemplates/abc123"
- access_uris Mapping[str, str]
- URIs for user to connect to the Cluster. Example: { "RAY_HEAD_NODE_INTERNAL_IP": "head-node-IP:10001" "RAY_DASHBOARD_URI": "ray-dashboard-address:8888" }
- notebook_runtime_ strtemplate 
- The resource name of NotebookRuntimeTemplate for the RoV Persistent Cluster The NotebokRuntimeTemplate is created in the same VPC (if set), and with the same Ray and Python version as the Persistent Cluster. Example: "projects/1000/locations/us-central1/notebookRuntimeTemplates/abc123"
- accessUris Map<String>
- URIs for user to connect to the Cluster. Example: { "RAY_HEAD_NODE_INTERNAL_IP": "head-node-IP:10001" "RAY_DASHBOARD_URI": "ray-dashboard-address:8888" }
- notebookRuntime StringTemplate 
- The resource name of NotebookRuntimeTemplate for the RoV Persistent Cluster The NotebokRuntimeTemplate is created in the same VPC (if set), and with the same Ray and Python version as the Persistent Cluster. Example: "projects/1000/locations/us-central1/notebookRuntimeTemplates/abc123"
GoogleCloudAiplatformV1beta1ResourceRuntimeSpec, GoogleCloudAiplatformV1beta1ResourceRuntimeSpecArgs            
- RaySpec Pulumi.Google Native. Aiplatform. V1Beta1. Inputs. Google Cloud Aiplatform V1beta1Ray Spec 
- Optional. Ray cluster configuration. Required when creating a dedicated RayCluster on the PersistentResource.
- ServiceAccount Pulumi.Spec Google Native. Aiplatform. V1Beta1. Inputs. Google Cloud Aiplatform V1beta1Service Account Spec 
- Optional. Configure the use of workload identity on the PersistentResource
- RaySpec GoogleCloud Aiplatform V1beta1Ray Spec 
- Optional. Ray cluster configuration. Required when creating a dedicated RayCluster on the PersistentResource.
- ServiceAccount GoogleSpec Cloud Aiplatform V1beta1Service Account Spec 
- Optional. Configure the use of workload identity on the PersistentResource
- raySpec GoogleCloud Aiplatform V1beta1Ray Spec 
- Optional. Ray cluster configuration. Required when creating a dedicated RayCluster on the PersistentResource.
- serviceAccount GoogleSpec Cloud Aiplatform V1beta1Service Account Spec 
- Optional. Configure the use of workload identity on the PersistentResource
- raySpec GoogleCloud Aiplatform V1beta1Ray Spec 
- Optional. Ray cluster configuration. Required when creating a dedicated RayCluster on the PersistentResource.
- serviceAccount GoogleSpec Cloud Aiplatform V1beta1Service Account Spec 
- Optional. Configure the use of workload identity on the PersistentResource
- ray_spec GoogleCloud Aiplatform V1beta1Ray Spec 
- Optional. Ray cluster configuration. Required when creating a dedicated RayCluster on the PersistentResource.
- service_account_ Googlespec Cloud Aiplatform V1beta1Service Account Spec 
- Optional. Configure the use of workload identity on the PersistentResource
- raySpec Property Map
- Optional. Ray cluster configuration. Required when creating a dedicated RayCluster on the PersistentResource.
- serviceAccount Property MapSpec 
- Optional. Configure the use of workload identity on the PersistentResource
GoogleCloudAiplatformV1beta1ResourceRuntimeSpecResponse, GoogleCloudAiplatformV1beta1ResourceRuntimeSpecResponseArgs              
- RaySpec Pulumi.Google Native. Aiplatform. V1Beta1. Inputs. Google Cloud Aiplatform V1beta1Ray Spec Response 
- Optional. Ray cluster configuration. Required when creating a dedicated RayCluster on the PersistentResource.
- ServiceAccount Pulumi.Spec Google Native. Aiplatform. V1Beta1. Inputs. Google Cloud Aiplatform V1beta1Service Account Spec Response 
- Optional. Configure the use of workload identity on the PersistentResource
- RaySpec GoogleCloud Aiplatform V1beta1Ray Spec Response 
- Optional. Ray cluster configuration. Required when creating a dedicated RayCluster on the PersistentResource.
- ServiceAccount GoogleSpec Cloud Aiplatform V1beta1Service Account Spec Response 
- Optional. Configure the use of workload identity on the PersistentResource
- raySpec GoogleCloud Aiplatform V1beta1Ray Spec Response 
- Optional. Ray cluster configuration. Required when creating a dedicated RayCluster on the PersistentResource.
- serviceAccount GoogleSpec Cloud Aiplatform V1beta1Service Account Spec Response 
- Optional. Configure the use of workload identity on the PersistentResource
- raySpec GoogleCloud Aiplatform V1beta1Ray Spec Response 
- Optional. Ray cluster configuration. Required when creating a dedicated RayCluster on the PersistentResource.
- serviceAccount GoogleSpec Cloud Aiplatform V1beta1Service Account Spec Response 
- Optional. Configure the use of workload identity on the PersistentResource
- ray_spec GoogleCloud Aiplatform V1beta1Ray Spec Response 
- Optional. Ray cluster configuration. Required when creating a dedicated RayCluster on the PersistentResource.
- service_account_ Googlespec Cloud Aiplatform V1beta1Service Account Spec Response 
- Optional. Configure the use of workload identity on the PersistentResource
- raySpec Property Map
- Optional. Ray cluster configuration. Required when creating a dedicated RayCluster on the PersistentResource.
- serviceAccount Property MapSpec 
- Optional. Configure the use of workload identity on the PersistentResource
GoogleCloudAiplatformV1beta1ServiceAccountSpec, GoogleCloudAiplatformV1beta1ServiceAccountSpecArgs            
- EnableCustom boolService Account 
- If true, custom user-managed service account is enforced to run any workloads (for example, Vertex Jobs) on the resource. Otherwise, uses the Vertex AI Custom Code Service Agent.
- ServiceAccount string
- Optional. Default service account that this PersistentResource's workloads run as. The workloads include: * Any runtime specified via ResourceRuntimeSpecon creation time, for example, Ray. * Jobs submitted to PersistentResource, if no other service account specified in the job specs. Only works when custom service account is enabled and users have theiam.serviceAccounts.actAspermission on this service account. Required if any containers are specified inResourceRuntimeSpec.
- EnableCustom boolService Account 
- If true, custom user-managed service account is enforced to run any workloads (for example, Vertex Jobs) on the resource. Otherwise, uses the Vertex AI Custom Code Service Agent.
- ServiceAccount string
- Optional. Default service account that this PersistentResource's workloads run as. The workloads include: * Any runtime specified via ResourceRuntimeSpecon creation time, for example, Ray. * Jobs submitted to PersistentResource, if no other service account specified in the job specs. Only works when custom service account is enabled and users have theiam.serviceAccounts.actAspermission on this service account. Required if any containers are specified inResourceRuntimeSpec.
- enableCustom BooleanService Account 
- If true, custom user-managed service account is enforced to run any workloads (for example, Vertex Jobs) on the resource. Otherwise, uses the Vertex AI Custom Code Service Agent.
- serviceAccount String
- Optional. Default service account that this PersistentResource's workloads run as. The workloads include: * Any runtime specified via ResourceRuntimeSpecon creation time, for example, Ray. * Jobs submitted to PersistentResource, if no other service account specified in the job specs. Only works when custom service account is enabled and users have theiam.serviceAccounts.actAspermission on this service account. Required if any containers are specified inResourceRuntimeSpec.
- enableCustom booleanService Account 
- If true, custom user-managed service account is enforced to run any workloads (for example, Vertex Jobs) on the resource. Otherwise, uses the Vertex AI Custom Code Service Agent.
- serviceAccount string
- Optional. Default service account that this PersistentResource's workloads run as. The workloads include: * Any runtime specified via ResourceRuntimeSpecon creation time, for example, Ray. * Jobs submitted to PersistentResource, if no other service account specified in the job specs. Only works when custom service account is enabled and users have theiam.serviceAccounts.actAspermission on this service account. Required if any containers are specified inResourceRuntimeSpec.
- enable_custom_ boolservice_ account 
- If true, custom user-managed service account is enforced to run any workloads (for example, Vertex Jobs) on the resource. Otherwise, uses the Vertex AI Custom Code Service Agent.
- service_account str
- Optional. Default service account that this PersistentResource's workloads run as. The workloads include: * Any runtime specified via ResourceRuntimeSpecon creation time, for example, Ray. * Jobs submitted to PersistentResource, if no other service account specified in the job specs. Only works when custom service account is enabled and users have theiam.serviceAccounts.actAspermission on this service account. Required if any containers are specified inResourceRuntimeSpec.
- enableCustom BooleanService Account 
- If true, custom user-managed service account is enforced to run any workloads (for example, Vertex Jobs) on the resource. Otherwise, uses the Vertex AI Custom Code Service Agent.
- serviceAccount String
- Optional. Default service account that this PersistentResource's workloads run as. The workloads include: * Any runtime specified via ResourceRuntimeSpecon creation time, for example, Ray. * Jobs submitted to PersistentResource, if no other service account specified in the job specs. Only works when custom service account is enabled and users have theiam.serviceAccounts.actAspermission on this service account. Required if any containers are specified inResourceRuntimeSpec.
GoogleCloudAiplatformV1beta1ServiceAccountSpecResponse, GoogleCloudAiplatformV1beta1ServiceAccountSpecResponseArgs              
- EnableCustom boolService Account 
- If true, custom user-managed service account is enforced to run any workloads (for example, Vertex Jobs) on the resource. Otherwise, uses the Vertex AI Custom Code Service Agent.
- ServiceAccount string
- Optional. Default service account that this PersistentResource's workloads run as. The workloads include: * Any runtime specified via ResourceRuntimeSpecon creation time, for example, Ray. * Jobs submitted to PersistentResource, if no other service account specified in the job specs. Only works when custom service account is enabled and users have theiam.serviceAccounts.actAspermission on this service account. Required if any containers are specified inResourceRuntimeSpec.
- EnableCustom boolService Account 
- If true, custom user-managed service account is enforced to run any workloads (for example, Vertex Jobs) on the resource. Otherwise, uses the Vertex AI Custom Code Service Agent.
- ServiceAccount string
- Optional. Default service account that this PersistentResource's workloads run as. The workloads include: * Any runtime specified via ResourceRuntimeSpecon creation time, for example, Ray. * Jobs submitted to PersistentResource, if no other service account specified in the job specs. Only works when custom service account is enabled and users have theiam.serviceAccounts.actAspermission on this service account. Required if any containers are specified inResourceRuntimeSpec.
- enableCustom BooleanService Account 
- If true, custom user-managed service account is enforced to run any workloads (for example, Vertex Jobs) on the resource. Otherwise, uses the Vertex AI Custom Code Service Agent.
- serviceAccount String
- Optional. Default service account that this PersistentResource's workloads run as. The workloads include: * Any runtime specified via ResourceRuntimeSpecon creation time, for example, Ray. * Jobs submitted to PersistentResource, if no other service account specified in the job specs. Only works when custom service account is enabled and users have theiam.serviceAccounts.actAspermission on this service account. Required if any containers are specified inResourceRuntimeSpec.
- enableCustom booleanService Account 
- If true, custom user-managed service account is enforced to run any workloads (for example, Vertex Jobs) on the resource. Otherwise, uses the Vertex AI Custom Code Service Agent.
- serviceAccount string
- Optional. Default service account that this PersistentResource's workloads run as. The workloads include: * Any runtime specified via ResourceRuntimeSpecon creation time, for example, Ray. * Jobs submitted to PersistentResource, if no other service account specified in the job specs. Only works when custom service account is enabled and users have theiam.serviceAccounts.actAspermission on this service account. Required if any containers are specified inResourceRuntimeSpec.
- enable_custom_ boolservice_ account 
- If true, custom user-managed service account is enforced to run any workloads (for example, Vertex Jobs) on the resource. Otherwise, uses the Vertex AI Custom Code Service Agent.
- service_account str
- Optional. Default service account that this PersistentResource's workloads run as. The workloads include: * Any runtime specified via ResourceRuntimeSpecon creation time, for example, Ray. * Jobs submitted to PersistentResource, if no other service account specified in the job specs. Only works when custom service account is enabled and users have theiam.serviceAccounts.actAspermission on this service account. Required if any containers are specified inResourceRuntimeSpec.
- enableCustom BooleanService Account 
- If true, custom user-managed service account is enforced to run any workloads (for example, Vertex Jobs) on the resource. Otherwise, uses the Vertex AI Custom Code Service Agent.
- serviceAccount String
- Optional. Default service account that this PersistentResource's workloads run as. The workloads include: * Any runtime specified via ResourceRuntimeSpecon creation time, for example, Ray. * Jobs submitted to PersistentResource, if no other service account specified in the job specs. Only works when custom service account is enabled and users have theiam.serviceAccounts.actAspermission on this service account. Required if any containers are specified inResourceRuntimeSpec.
GoogleRpcStatusResponse, GoogleRpcStatusResponseArgs        
- Code int
- The status code, which should be an enum value of google.rpc.Code.
- Details
List<ImmutableDictionary<string, string>> 
- A list of messages that carry the error details. There is a common set of message types for APIs to use.
- Message string
- A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
- Code int
- The status code, which should be an enum value of google.rpc.Code.
- Details []map[string]string
- A list of messages that carry the error details. There is a common set of message types for APIs to use.
- Message string
- A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
- code Integer
- The status code, which should be an enum value of google.rpc.Code.
- details List<Map<String,String>>
- A list of messages that carry the error details. There is a common set of message types for APIs to use.
- message String
- A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
- code number
- The status code, which should be an enum value of google.rpc.Code.
- details {[key: string]: string}[]
- A list of messages that carry the error details. There is a common set of message types for APIs to use.
- message string
- A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
- code int
- The status code, which should be an enum value of google.rpc.Code.
- details Sequence[Mapping[str, str]]
- A list of messages that carry the error details. There is a common set of message types for APIs to use.
- message str
- A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
- code Number
- The status code, which should be an enum value of google.rpc.Code.
- details List<Map<String>>
- A list of messages that carry the error details. There is a common set of message types for APIs to use.
- message String
- A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
Package Details
- Repository
- Google Cloud Native pulumi/pulumi-google-native
- License
- Apache-2.0
Google Cloud Native is in preview. Google Cloud Classic is fully supported.