aws.glue.MLTransform
Explore with Pulumi AI
Provides a Glue ML Transform resource.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as aws from "@pulumi/aws";
const testCatalogDatabase = new aws.glue.CatalogDatabase("test", {name: "example"});
const testCatalogTable = new aws.glue.CatalogTable("test", {
    name: "example",
    databaseName: testCatalogDatabase.name,
    owner: "my_owner",
    retention: 1,
    tableType: "VIRTUAL_VIEW",
    viewExpandedText: "view_expanded_text_1",
    viewOriginalText: "view_original_text_1",
    storageDescriptor: {
        bucketColumns: ["bucket_column_1"],
        compressed: false,
        inputFormat: "SequenceFileInputFormat",
        location: "my_location",
        numberOfBuckets: 1,
        outputFormat: "SequenceFileInputFormat",
        storedAsSubDirectories: false,
        parameters: {
            param1: "param1_val",
        },
        columns: [
            {
                name: "my_column_1",
                type: "int",
                comment: "my_column1_comment",
            },
            {
                name: "my_column_2",
                type: "string",
                comment: "my_column2_comment",
            },
        ],
        serDeInfo: {
            name: "ser_de_name",
            parameters: {
                param1: "param_val_1",
            },
            serializationLibrary: "org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe",
        },
        sortColumns: [{
            column: "my_column_1",
            sortOrder: 1,
        }],
        skewedInfo: {
            skewedColumnNames: ["my_column_1"],
            skewedColumnValueLocationMaps: {
                my_column_1: "my_column_1_val_loc_map",
            },
            skewedColumnValues: ["skewed_val_1"],
        },
    },
    partitionKeys: [
        {
            name: "my_column_1",
            type: "int",
            comment: "my_column_1_comment",
        },
        {
            name: "my_column_2",
            type: "string",
            comment: "my_column_2_comment",
        },
    ],
    parameters: {
        param1: "param1_val",
    },
});
const test = new aws.glue.MLTransform("test", {
    name: "example",
    roleArn: testAwsIamRole.arn,
    inputRecordTables: [{
        databaseName: testCatalogTable.databaseName,
        tableName: testCatalogTable.name,
    }],
    parameters: {
        transformType: "FIND_MATCHES",
        findMatchesParameters: {
            primaryKeyColumnName: "my_column_1",
        },
    },
}, {
    dependsOn: [testAwsIamRolePolicyAttachment],
});
import pulumi
import pulumi_aws as aws
test_catalog_database = aws.glue.CatalogDatabase("test", name="example")
test_catalog_table = aws.glue.CatalogTable("test",
    name="example",
    database_name=test_catalog_database.name,
    owner="my_owner",
    retention=1,
    table_type="VIRTUAL_VIEW",
    view_expanded_text="view_expanded_text_1",
    view_original_text="view_original_text_1",
    storage_descriptor={
        "bucket_columns": ["bucket_column_1"],
        "compressed": False,
        "input_format": "SequenceFileInputFormat",
        "location": "my_location",
        "number_of_buckets": 1,
        "output_format": "SequenceFileInputFormat",
        "stored_as_sub_directories": False,
        "parameters": {
            "param1": "param1_val",
        },
        "columns": [
            {
                "name": "my_column_1",
                "type": "int",
                "comment": "my_column1_comment",
            },
            {
                "name": "my_column_2",
                "type": "string",
                "comment": "my_column2_comment",
            },
        ],
        "ser_de_info": {
            "name": "ser_de_name",
            "parameters": {
                "param1": "param_val_1",
            },
            "serialization_library": "org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe",
        },
        "sort_columns": [{
            "column": "my_column_1",
            "sort_order": 1,
        }],
        "skewed_info": {
            "skewed_column_names": ["my_column_1"],
            "skewed_column_value_location_maps": {
                "my_column_1": "my_column_1_val_loc_map",
            },
            "skewed_column_values": ["skewed_val_1"],
        },
    },
    partition_keys=[
        {
            "name": "my_column_1",
            "type": "int",
            "comment": "my_column_1_comment",
        },
        {
            "name": "my_column_2",
            "type": "string",
            "comment": "my_column_2_comment",
        },
    ],
    parameters={
        "param1": "param1_val",
    })
test = aws.glue.MLTransform("test",
    name="example",
    role_arn=test_aws_iam_role["arn"],
    input_record_tables=[{
        "database_name": test_catalog_table.database_name,
        "table_name": test_catalog_table.name,
    }],
    parameters={
        "transform_type": "FIND_MATCHES",
        "find_matches_parameters": {
            "primary_key_column_name": "my_column_1",
        },
    },
    opts = pulumi.ResourceOptions(depends_on=[test_aws_iam_role_policy_attachment]))
package main
import (
	"github.com/pulumi/pulumi-aws/sdk/v6/go/aws/glue"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		testCatalogDatabase, err := glue.NewCatalogDatabase(ctx, "test", &glue.CatalogDatabaseArgs{
			Name: pulumi.String("example"),
		})
		if err != nil {
			return err
		}
		testCatalogTable, err := glue.NewCatalogTable(ctx, "test", &glue.CatalogTableArgs{
			Name:             pulumi.String("example"),
			DatabaseName:     testCatalogDatabase.Name,
			Owner:            pulumi.String("my_owner"),
			Retention:        pulumi.Int(1),
			TableType:        pulumi.String("VIRTUAL_VIEW"),
			ViewExpandedText: pulumi.String("view_expanded_text_1"),
			ViewOriginalText: pulumi.String("view_original_text_1"),
			StorageDescriptor: &glue.CatalogTableStorageDescriptorArgs{
				BucketColumns: pulumi.StringArray{
					pulumi.String("bucket_column_1"),
				},
				Compressed:             pulumi.Bool(false),
				InputFormat:            pulumi.String("SequenceFileInputFormat"),
				Location:               pulumi.String("my_location"),
				NumberOfBuckets:        pulumi.Int(1),
				OutputFormat:           pulumi.String("SequenceFileInputFormat"),
				StoredAsSubDirectories: pulumi.Bool(false),
				Parameters: pulumi.StringMap{
					"param1": pulumi.String("param1_val"),
				},
				Columns: glue.CatalogTableStorageDescriptorColumnArray{
					&glue.CatalogTableStorageDescriptorColumnArgs{
						Name:    pulumi.String("my_column_1"),
						Type:    pulumi.String("int"),
						Comment: pulumi.String("my_column1_comment"),
					},
					&glue.CatalogTableStorageDescriptorColumnArgs{
						Name:    pulumi.String("my_column_2"),
						Type:    pulumi.String("string"),
						Comment: pulumi.String("my_column2_comment"),
					},
				},
				SerDeInfo: &glue.CatalogTableStorageDescriptorSerDeInfoArgs{
					Name: pulumi.String("ser_de_name"),
					Parameters: pulumi.StringMap{
						"param1": pulumi.String("param_val_1"),
					},
					SerializationLibrary: pulumi.String("org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe"),
				},
				SortColumns: glue.CatalogTableStorageDescriptorSortColumnArray{
					&glue.CatalogTableStorageDescriptorSortColumnArgs{
						Column:    pulumi.String("my_column_1"),
						SortOrder: pulumi.Int(1),
					},
				},
				SkewedInfo: &glue.CatalogTableStorageDescriptorSkewedInfoArgs{
					SkewedColumnNames: pulumi.StringArray{
						pulumi.String("my_column_1"),
					},
					SkewedColumnValueLocationMaps: pulumi.StringMap{
						"my_column_1": pulumi.String("my_column_1_val_loc_map"),
					},
					SkewedColumnValues: pulumi.StringArray{
						pulumi.String("skewed_val_1"),
					},
				},
			},
			PartitionKeys: glue.CatalogTablePartitionKeyArray{
				&glue.CatalogTablePartitionKeyArgs{
					Name:    pulumi.String("my_column_1"),
					Type:    pulumi.String("int"),
					Comment: pulumi.String("my_column_1_comment"),
				},
				&glue.CatalogTablePartitionKeyArgs{
					Name:    pulumi.String("my_column_2"),
					Type:    pulumi.String("string"),
					Comment: pulumi.String("my_column_2_comment"),
				},
			},
			Parameters: pulumi.StringMap{
				"param1": pulumi.String("param1_val"),
			},
		})
		if err != nil {
			return err
		}
		_, err = glue.NewMLTransform(ctx, "test", &glue.MLTransformArgs{
			Name:    pulumi.String("example"),
			RoleArn: pulumi.Any(testAwsIamRole.Arn),
			InputRecordTables: glue.MLTransformInputRecordTableArray{
				&glue.MLTransformInputRecordTableArgs{
					DatabaseName: testCatalogTable.DatabaseName,
					TableName:    testCatalogTable.Name,
				},
			},
			Parameters: &glue.MLTransformParametersArgs{
				TransformType: pulumi.String("FIND_MATCHES"),
				FindMatchesParameters: &glue.MLTransformParametersFindMatchesParametersArgs{
					PrimaryKeyColumnName: pulumi.String("my_column_1"),
				},
			},
		}, pulumi.DependsOn([]pulumi.Resource{
			testAwsIamRolePolicyAttachment,
		}))
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Aws = Pulumi.Aws;
return await Deployment.RunAsync(() => 
{
    var testCatalogDatabase = new Aws.Glue.CatalogDatabase("test", new()
    {
        Name = "example",
    });
    var testCatalogTable = new Aws.Glue.CatalogTable("test", new()
    {
        Name = "example",
        DatabaseName = testCatalogDatabase.Name,
        Owner = "my_owner",
        Retention = 1,
        TableType = "VIRTUAL_VIEW",
        ViewExpandedText = "view_expanded_text_1",
        ViewOriginalText = "view_original_text_1",
        StorageDescriptor = new Aws.Glue.Inputs.CatalogTableStorageDescriptorArgs
        {
            BucketColumns = new[]
            {
                "bucket_column_1",
            },
            Compressed = false,
            InputFormat = "SequenceFileInputFormat",
            Location = "my_location",
            NumberOfBuckets = 1,
            OutputFormat = "SequenceFileInputFormat",
            StoredAsSubDirectories = false,
            Parameters = 
            {
                { "param1", "param1_val" },
            },
            Columns = new[]
            {
                new Aws.Glue.Inputs.CatalogTableStorageDescriptorColumnArgs
                {
                    Name = "my_column_1",
                    Type = "int",
                    Comment = "my_column1_comment",
                },
                new Aws.Glue.Inputs.CatalogTableStorageDescriptorColumnArgs
                {
                    Name = "my_column_2",
                    Type = "string",
                    Comment = "my_column2_comment",
                },
            },
            SerDeInfo = new Aws.Glue.Inputs.CatalogTableStorageDescriptorSerDeInfoArgs
            {
                Name = "ser_de_name",
                Parameters = 
                {
                    { "param1", "param_val_1" },
                },
                SerializationLibrary = "org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe",
            },
            SortColumns = new[]
            {
                new Aws.Glue.Inputs.CatalogTableStorageDescriptorSortColumnArgs
                {
                    Column = "my_column_1",
                    SortOrder = 1,
                },
            },
            SkewedInfo = new Aws.Glue.Inputs.CatalogTableStorageDescriptorSkewedInfoArgs
            {
                SkewedColumnNames = new[]
                {
                    "my_column_1",
                },
                SkewedColumnValueLocationMaps = 
                {
                    { "my_column_1", "my_column_1_val_loc_map" },
                },
                SkewedColumnValues = new[]
                {
                    "skewed_val_1",
                },
            },
        },
        PartitionKeys = new[]
        {
            new Aws.Glue.Inputs.CatalogTablePartitionKeyArgs
            {
                Name = "my_column_1",
                Type = "int",
                Comment = "my_column_1_comment",
            },
            new Aws.Glue.Inputs.CatalogTablePartitionKeyArgs
            {
                Name = "my_column_2",
                Type = "string",
                Comment = "my_column_2_comment",
            },
        },
        Parameters = 
        {
            { "param1", "param1_val" },
        },
    });
    var test = new Aws.Glue.MLTransform("test", new()
    {
        Name = "example",
        RoleArn = testAwsIamRole.Arn,
        InputRecordTables = new[]
        {
            new Aws.Glue.Inputs.MLTransformInputRecordTableArgs
            {
                DatabaseName = testCatalogTable.DatabaseName,
                TableName = testCatalogTable.Name,
            },
        },
        Parameters = new Aws.Glue.Inputs.MLTransformParametersArgs
        {
            TransformType = "FIND_MATCHES",
            FindMatchesParameters = new Aws.Glue.Inputs.MLTransformParametersFindMatchesParametersArgs
            {
                PrimaryKeyColumnName = "my_column_1",
            },
        },
    }, new CustomResourceOptions
    {
        DependsOn =
        {
            testAwsIamRolePolicyAttachment,
        },
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.aws.glue.CatalogDatabase;
import com.pulumi.aws.glue.CatalogDatabaseArgs;
import com.pulumi.aws.glue.CatalogTable;
import com.pulumi.aws.glue.CatalogTableArgs;
import com.pulumi.aws.glue.inputs.CatalogTableStorageDescriptorArgs;
import com.pulumi.aws.glue.inputs.CatalogTableStorageDescriptorSerDeInfoArgs;
import com.pulumi.aws.glue.inputs.CatalogTableStorageDescriptorSkewedInfoArgs;
import com.pulumi.aws.glue.inputs.CatalogTablePartitionKeyArgs;
import com.pulumi.aws.glue.MLTransform;
import com.pulumi.aws.glue.MLTransformArgs;
import com.pulumi.aws.glue.inputs.MLTransformInputRecordTableArgs;
import com.pulumi.aws.glue.inputs.MLTransformParametersArgs;
import com.pulumi.aws.glue.inputs.MLTransformParametersFindMatchesParametersArgs;
import com.pulumi.resources.CustomResourceOptions;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        var testCatalogDatabase = new CatalogDatabase("testCatalogDatabase", CatalogDatabaseArgs.builder()
            .name("example")
            .build());
        var testCatalogTable = new CatalogTable("testCatalogTable", CatalogTableArgs.builder()
            .name("example")
            .databaseName(testCatalogDatabase.name())
            .owner("my_owner")
            .retention(1)
            .tableType("VIRTUAL_VIEW")
            .viewExpandedText("view_expanded_text_1")
            .viewOriginalText("view_original_text_1")
            .storageDescriptor(CatalogTableStorageDescriptorArgs.builder()
                .bucketColumns("bucket_column_1")
                .compressed(false)
                .inputFormat("SequenceFileInputFormat")
                .location("my_location")
                .numberOfBuckets(1)
                .outputFormat("SequenceFileInputFormat")
                .storedAsSubDirectories(false)
                .parameters(Map.of("param1", "param1_val"))
                .columns(                
                    CatalogTableStorageDescriptorColumnArgs.builder()
                        .name("my_column_1")
                        .type("int")
                        .comment("my_column1_comment")
                        .build(),
                    CatalogTableStorageDescriptorColumnArgs.builder()
                        .name("my_column_2")
                        .type("string")
                        .comment("my_column2_comment")
                        .build())
                .serDeInfo(CatalogTableStorageDescriptorSerDeInfoArgs.builder()
                    .name("ser_de_name")
                    .parameters(Map.of("param1", "param_val_1"))
                    .serializationLibrary("org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe")
                    .build())
                .sortColumns(CatalogTableStorageDescriptorSortColumnArgs.builder()
                    .column("my_column_1")
                    .sortOrder(1)
                    .build())
                .skewedInfo(CatalogTableStorageDescriptorSkewedInfoArgs.builder()
                    .skewedColumnNames("my_column_1")
                    .skewedColumnValueLocationMaps(Map.of("my_column_1", "my_column_1_val_loc_map"))
                    .skewedColumnValues("skewed_val_1")
                    .build())
                .build())
            .partitionKeys(            
                CatalogTablePartitionKeyArgs.builder()
                    .name("my_column_1")
                    .type("int")
                    .comment("my_column_1_comment")
                    .build(),
                CatalogTablePartitionKeyArgs.builder()
                    .name("my_column_2")
                    .type("string")
                    .comment("my_column_2_comment")
                    .build())
            .parameters(Map.of("param1", "param1_val"))
            .build());
        var test = new MLTransform("test", MLTransformArgs.builder()
            .name("example")
            .roleArn(testAwsIamRole.arn())
            .inputRecordTables(MLTransformInputRecordTableArgs.builder()
                .databaseName(testCatalogTable.databaseName())
                .tableName(testCatalogTable.name())
                .build())
            .parameters(MLTransformParametersArgs.builder()
                .transformType("FIND_MATCHES")
                .findMatchesParameters(MLTransformParametersFindMatchesParametersArgs.builder()
                    .primaryKeyColumnName("my_column_1")
                    .build())
                .build())
            .build(), CustomResourceOptions.builder()
                .dependsOn(testAwsIamRolePolicyAttachment)
                .build());
    }
}
resources:
  test:
    type: aws:glue:MLTransform
    properties:
      name: example
      roleArn: ${testAwsIamRole.arn}
      inputRecordTables:
        - databaseName: ${testCatalogTable.databaseName}
          tableName: ${testCatalogTable.name}
      parameters:
        transformType: FIND_MATCHES
        findMatchesParameters:
          primaryKeyColumnName: my_column_1
    options:
      dependsOn:
        - ${testAwsIamRolePolicyAttachment}
  testCatalogDatabase:
    type: aws:glue:CatalogDatabase
    name: test
    properties:
      name: example
  testCatalogTable:
    type: aws:glue:CatalogTable
    name: test
    properties:
      name: example
      databaseName: ${testCatalogDatabase.name}
      owner: my_owner
      retention: 1
      tableType: VIRTUAL_VIEW
      viewExpandedText: view_expanded_text_1
      viewOriginalText: view_original_text_1
      storageDescriptor:
        bucketColumns:
          - bucket_column_1
        compressed: false
        inputFormat: SequenceFileInputFormat
        location: my_location
        numberOfBuckets: 1
        outputFormat: SequenceFileInputFormat
        storedAsSubDirectories: false
        parameters:
          param1: param1_val
        columns:
          - name: my_column_1
            type: int
            comment: my_column1_comment
          - name: my_column_2
            type: string
            comment: my_column2_comment
        serDeInfo:
          name: ser_de_name
          parameters:
            param1: param_val_1
          serializationLibrary: org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe
        sortColumns:
          - column: my_column_1
            sortOrder: 1
        skewedInfo:
          skewedColumnNames:
            - my_column_1
          skewedColumnValueLocationMaps:
            my_column_1: my_column_1_val_loc_map
          skewedColumnValues:
            - skewed_val_1
      partitionKeys:
        - name: my_column_1
          type: int
          comment: my_column_1_comment
        - name: my_column_2
          type: string
          comment: my_column_2_comment
      parameters:
        param1: param1_val
Create MLTransform Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new MLTransform(name: string, args: MLTransformArgs, opts?: CustomResourceOptions);@overload
def MLTransform(resource_name: str,
                args: MLTransformArgs,
                opts: Optional[ResourceOptions] = None)
@overload
def MLTransform(resource_name: str,
                opts: Optional[ResourceOptions] = None,
                input_record_tables: Optional[Sequence[MLTransformInputRecordTableArgs]] = None,
                parameters: Optional[MLTransformParametersArgs] = None,
                role_arn: Optional[str] = None,
                description: Optional[str] = None,
                glue_version: Optional[str] = None,
                max_capacity: Optional[float] = None,
                max_retries: Optional[int] = None,
                name: Optional[str] = None,
                number_of_workers: Optional[int] = None,
                tags: Optional[Mapping[str, str]] = None,
                timeout: Optional[int] = None,
                worker_type: Optional[str] = None)func NewMLTransform(ctx *Context, name string, args MLTransformArgs, opts ...ResourceOption) (*MLTransform, error)public MLTransform(string name, MLTransformArgs args, CustomResourceOptions? opts = null)
public MLTransform(String name, MLTransformArgs args)
public MLTransform(String name, MLTransformArgs args, CustomResourceOptions options)
type: aws:glue:MLTransform
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args MLTransformArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args MLTransformArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args MLTransformArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args MLTransformArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args MLTransformArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var mltransformResource = new Aws.Glue.MLTransform("mltransformResource", new()
{
    InputRecordTables = new[]
    {
        new Aws.Glue.Inputs.MLTransformInputRecordTableArgs
        {
            DatabaseName = "string",
            TableName = "string",
            CatalogId = "string",
            ConnectionName = "string",
        },
    },
    Parameters = new Aws.Glue.Inputs.MLTransformParametersArgs
    {
        FindMatchesParameters = new Aws.Glue.Inputs.MLTransformParametersFindMatchesParametersArgs
        {
            AccuracyCostTradeOff = 0,
            EnforceProvidedLabels = false,
            PrecisionRecallTradeOff = 0,
            PrimaryKeyColumnName = "string",
        },
        TransformType = "string",
    },
    RoleArn = "string",
    Description = "string",
    GlueVersion = "string",
    MaxCapacity = 0,
    MaxRetries = 0,
    Name = "string",
    NumberOfWorkers = 0,
    Tags = 
    {
        { "string", "string" },
    },
    Timeout = 0,
    WorkerType = "string",
});
example, err := glue.NewMLTransform(ctx, "mltransformResource", &glue.MLTransformArgs{
	InputRecordTables: glue.MLTransformInputRecordTableArray{
		&glue.MLTransformInputRecordTableArgs{
			DatabaseName:   pulumi.String("string"),
			TableName:      pulumi.String("string"),
			CatalogId:      pulumi.String("string"),
			ConnectionName: pulumi.String("string"),
		},
	},
	Parameters: &glue.MLTransformParametersArgs{
		FindMatchesParameters: &glue.MLTransformParametersFindMatchesParametersArgs{
			AccuracyCostTradeOff:    pulumi.Float64(0),
			EnforceProvidedLabels:   pulumi.Bool(false),
			PrecisionRecallTradeOff: pulumi.Float64(0),
			PrimaryKeyColumnName:    pulumi.String("string"),
		},
		TransformType: pulumi.String("string"),
	},
	RoleArn:         pulumi.String("string"),
	Description:     pulumi.String("string"),
	GlueVersion:     pulumi.String("string"),
	MaxCapacity:     pulumi.Float64(0),
	MaxRetries:      pulumi.Int(0),
	Name:            pulumi.String("string"),
	NumberOfWorkers: pulumi.Int(0),
	Tags: pulumi.StringMap{
		"string": pulumi.String("string"),
	},
	Timeout:    pulumi.Int(0),
	WorkerType: pulumi.String("string"),
})
var mltransformResource = new MLTransform("mltransformResource", MLTransformArgs.builder()
    .inputRecordTables(MLTransformInputRecordTableArgs.builder()
        .databaseName("string")
        .tableName("string")
        .catalogId("string")
        .connectionName("string")
        .build())
    .parameters(MLTransformParametersArgs.builder()
        .findMatchesParameters(MLTransformParametersFindMatchesParametersArgs.builder()
            .accuracyCostTradeOff(0)
            .enforceProvidedLabels(false)
            .precisionRecallTradeOff(0)
            .primaryKeyColumnName("string")
            .build())
        .transformType("string")
        .build())
    .roleArn("string")
    .description("string")
    .glueVersion("string")
    .maxCapacity(0)
    .maxRetries(0)
    .name("string")
    .numberOfWorkers(0)
    .tags(Map.of("string", "string"))
    .timeout(0)
    .workerType("string")
    .build());
mltransform_resource = aws.glue.MLTransform("mltransformResource",
    input_record_tables=[{
        "database_name": "string",
        "table_name": "string",
        "catalog_id": "string",
        "connection_name": "string",
    }],
    parameters={
        "find_matches_parameters": {
            "accuracy_cost_trade_off": 0,
            "enforce_provided_labels": False,
            "precision_recall_trade_off": 0,
            "primary_key_column_name": "string",
        },
        "transform_type": "string",
    },
    role_arn="string",
    description="string",
    glue_version="string",
    max_capacity=0,
    max_retries=0,
    name="string",
    number_of_workers=0,
    tags={
        "string": "string",
    },
    timeout=0,
    worker_type="string")
const mltransformResource = new aws.glue.MLTransform("mltransformResource", {
    inputRecordTables: [{
        databaseName: "string",
        tableName: "string",
        catalogId: "string",
        connectionName: "string",
    }],
    parameters: {
        findMatchesParameters: {
            accuracyCostTradeOff: 0,
            enforceProvidedLabels: false,
            precisionRecallTradeOff: 0,
            primaryKeyColumnName: "string",
        },
        transformType: "string",
    },
    roleArn: "string",
    description: "string",
    glueVersion: "string",
    maxCapacity: 0,
    maxRetries: 0,
    name: "string",
    numberOfWorkers: 0,
    tags: {
        string: "string",
    },
    timeout: 0,
    workerType: "string",
});
type: aws:glue:MLTransform
properties:
    description: string
    glueVersion: string
    inputRecordTables:
        - catalogId: string
          connectionName: string
          databaseName: string
          tableName: string
    maxCapacity: 0
    maxRetries: 0
    name: string
    numberOfWorkers: 0
    parameters:
        findMatchesParameters:
            accuracyCostTradeOff: 0
            enforceProvidedLabels: false
            precisionRecallTradeOff: 0
            primaryKeyColumnName: string
        transformType: string
    roleArn: string
    tags:
        string: string
    timeout: 0
    workerType: string
MLTransform Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The MLTransform resource accepts the following input properties:
- InputRecord List<MLTransformTables Input Record Table> 
- A list of AWS Glue table definitions used by the transform. see Input Record Tables.
- Parameters
MLTransformParameters 
- The algorithmic parameters that are specific to the transform type used. Conditionally dependent on the transform type. see Parameters.
- RoleArn string
- The ARN of the IAM role associated with this ML Transform.
- Description string
- Description of the ML Transform.
- GlueVersion string
- The version of glue to use, for example "1.0". For information about available versions, see the AWS Glue Release Notes.
- MaxCapacity double
- The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this transform. You can allocate from 2to100DPUs; the default is10.max_capacityis a mutually exclusive option withnumber_of_workersandworker_type.
- MaxRetries int
- The maximum number of times to retry this ML Transform if it fails.
- Name string
- The name you assign to this ML Transform. It must be unique in your account.
- NumberOf intWorkers 
- The number of workers of a defined worker_typethat are allocated when an ML Transform runs. Required withworker_type.
- Dictionary<string, string>
- Key-value map of resource tags. .If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Timeout int
- The ML Transform timeout in minutes. The default is 2880 minutes (48 hours).
- WorkerType string
- The type of predefined worker that is allocated when an ML Transform runs. Accepts a value of Standard,G.1X, orG.2X. Required withnumber_of_workers.
- InputRecord []MLTransformTables Input Record Table Args 
- A list of AWS Glue table definitions used by the transform. see Input Record Tables.
- Parameters
MLTransformParameters Args 
- The algorithmic parameters that are specific to the transform type used. Conditionally dependent on the transform type. see Parameters.
- RoleArn string
- The ARN of the IAM role associated with this ML Transform.
- Description string
- Description of the ML Transform.
- GlueVersion string
- The version of glue to use, for example "1.0". For information about available versions, see the AWS Glue Release Notes.
- MaxCapacity float64
- The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this transform. You can allocate from 2to100DPUs; the default is10.max_capacityis a mutually exclusive option withnumber_of_workersandworker_type.
- MaxRetries int
- The maximum number of times to retry this ML Transform if it fails.
- Name string
- The name you assign to this ML Transform. It must be unique in your account.
- NumberOf intWorkers 
- The number of workers of a defined worker_typethat are allocated when an ML Transform runs. Required withworker_type.
- map[string]string
- Key-value map of resource tags. .If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Timeout int
- The ML Transform timeout in minutes. The default is 2880 minutes (48 hours).
- WorkerType string
- The type of predefined worker that is allocated when an ML Transform runs. Accepts a value of Standard,G.1X, orG.2X. Required withnumber_of_workers.
- inputRecord List<MLTransformTables Input Record Table> 
- A list of AWS Glue table definitions used by the transform. see Input Record Tables.
- parameters
MLTransformParameters 
- The algorithmic parameters that are specific to the transform type used. Conditionally dependent on the transform type. see Parameters.
- roleArn String
- The ARN of the IAM role associated with this ML Transform.
- description String
- Description of the ML Transform.
- glueVersion String
- The version of glue to use, for example "1.0". For information about available versions, see the AWS Glue Release Notes.
- maxCapacity Double
- The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this transform. You can allocate from 2to100DPUs; the default is10.max_capacityis a mutually exclusive option withnumber_of_workersandworker_type.
- maxRetries Integer
- The maximum number of times to retry this ML Transform if it fails.
- name String
- The name you assign to this ML Transform. It must be unique in your account.
- numberOf IntegerWorkers 
- The number of workers of a defined worker_typethat are allocated when an ML Transform runs. Required withworker_type.
- Map<String,String>
- Key-value map of resource tags. .If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- timeout Integer
- The ML Transform timeout in minutes. The default is 2880 minutes (48 hours).
- workerType String
- The type of predefined worker that is allocated when an ML Transform runs. Accepts a value of Standard,G.1X, orG.2X. Required withnumber_of_workers.
- inputRecord MLTransformTables Input Record Table[] 
- A list of AWS Glue table definitions used by the transform. see Input Record Tables.
- parameters
MLTransformParameters 
- The algorithmic parameters that are specific to the transform type used. Conditionally dependent on the transform type. see Parameters.
- roleArn string
- The ARN of the IAM role associated with this ML Transform.
- description string
- Description of the ML Transform.
- glueVersion string
- The version of glue to use, for example "1.0". For information about available versions, see the AWS Glue Release Notes.
- maxCapacity number
- The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this transform. You can allocate from 2to100DPUs; the default is10.max_capacityis a mutually exclusive option withnumber_of_workersandworker_type.
- maxRetries number
- The maximum number of times to retry this ML Transform if it fails.
- name string
- The name you assign to this ML Transform. It must be unique in your account.
- numberOf numberWorkers 
- The number of workers of a defined worker_typethat are allocated when an ML Transform runs. Required withworker_type.
- {[key: string]: string}
- Key-value map of resource tags. .If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- timeout number
- The ML Transform timeout in minutes. The default is 2880 minutes (48 hours).
- workerType string
- The type of predefined worker that is allocated when an ML Transform runs. Accepts a value of Standard,G.1X, orG.2X. Required withnumber_of_workers.
- input_record_ Sequence[MLTransformtables Input Record Table Args] 
- A list of AWS Glue table definitions used by the transform. see Input Record Tables.
- parameters
MLTransformParameters Args 
- The algorithmic parameters that are specific to the transform type used. Conditionally dependent on the transform type. see Parameters.
- role_arn str
- The ARN of the IAM role associated with this ML Transform.
- description str
- Description of the ML Transform.
- glue_version str
- The version of glue to use, for example "1.0". For information about available versions, see the AWS Glue Release Notes.
- max_capacity float
- The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this transform. You can allocate from 2to100DPUs; the default is10.max_capacityis a mutually exclusive option withnumber_of_workersandworker_type.
- max_retries int
- The maximum number of times to retry this ML Transform if it fails.
- name str
- The name you assign to this ML Transform. It must be unique in your account.
- number_of_ intworkers 
- The number of workers of a defined worker_typethat are allocated when an ML Transform runs. Required withworker_type.
- Mapping[str, str]
- Key-value map of resource tags. .If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- timeout int
- The ML Transform timeout in minutes. The default is 2880 minutes (48 hours).
- worker_type str
- The type of predefined worker that is allocated when an ML Transform runs. Accepts a value of Standard,G.1X, orG.2X. Required withnumber_of_workers.
- inputRecord List<Property Map>Tables 
- A list of AWS Glue table definitions used by the transform. see Input Record Tables.
- parameters Property Map
- The algorithmic parameters that are specific to the transform type used. Conditionally dependent on the transform type. see Parameters.
- roleArn String
- The ARN of the IAM role associated with this ML Transform.
- description String
- Description of the ML Transform.
- glueVersion String
- The version of glue to use, for example "1.0". For information about available versions, see the AWS Glue Release Notes.
- maxCapacity Number
- The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this transform. You can allocate from 2to100DPUs; the default is10.max_capacityis a mutually exclusive option withnumber_of_workersandworker_type.
- maxRetries Number
- The maximum number of times to retry this ML Transform if it fails.
- name String
- The name you assign to this ML Transform. It must be unique in your account.
- numberOf NumberWorkers 
- The number of workers of a defined worker_typethat are allocated when an ML Transform runs. Required withworker_type.
- Map<String>
- Key-value map of resource tags. .If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- timeout Number
- The ML Transform timeout in minutes. The default is 2880 minutes (48 hours).
- workerType String
- The type of predefined worker that is allocated when an ML Transform runs. Accepts a value of Standard,G.1X, orG.2X. Required withnumber_of_workers.
Outputs
All input properties are implicitly available as output properties. Additionally, the MLTransform resource produces the following output properties:
- Arn string
- Amazon Resource Name (ARN) of Glue ML Transform.
- Id string
- The provider-assigned unique ID for this managed resource.
- LabelCount int
- The number of labels available for this transform.
- Schemas
List<MLTransformSchema> 
- The object that represents the schema that this transform accepts. see Schema.
- Dictionary<string, string>
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- Arn string
- Amazon Resource Name (ARN) of Glue ML Transform.
- Id string
- The provider-assigned unique ID for this managed resource.
- LabelCount int
- The number of labels available for this transform.
- Schemas
[]MLTransformSchema 
- The object that represents the schema that this transform accepts. see Schema.
- map[string]string
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- arn String
- Amazon Resource Name (ARN) of Glue ML Transform.
- id String
- The provider-assigned unique ID for this managed resource.
- labelCount Integer
- The number of labels available for this transform.
- schemas
List<MLTransformSchema> 
- The object that represents the schema that this transform accepts. see Schema.
- Map<String,String>
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- arn string
- Amazon Resource Name (ARN) of Glue ML Transform.
- id string
- The provider-assigned unique ID for this managed resource.
- labelCount number
- The number of labels available for this transform.
- schemas
MLTransformSchema[] 
- The object that represents the schema that this transform accepts. see Schema.
- {[key: string]: string}
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- arn str
- Amazon Resource Name (ARN) of Glue ML Transform.
- id str
- The provider-assigned unique ID for this managed resource.
- label_count int
- The number of labels available for this transform.
- schemas
Sequence[MLTransformSchema] 
- The object that represents the schema that this transform accepts. see Schema.
- Mapping[str, str]
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- arn String
- Amazon Resource Name (ARN) of Glue ML Transform.
- id String
- The provider-assigned unique ID for this managed resource.
- labelCount Number
- The number of labels available for this transform.
- schemas List<Property Map>
- The object that represents the schema that this transform accepts. see Schema.
- Map<String>
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
Look up Existing MLTransform Resource
Get an existing MLTransform resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: MLTransformState, opts?: CustomResourceOptions): MLTransform@staticmethod
def get(resource_name: str,
        id: str,
        opts: Optional[ResourceOptions] = None,
        arn: Optional[str] = None,
        description: Optional[str] = None,
        glue_version: Optional[str] = None,
        input_record_tables: Optional[Sequence[MLTransformInputRecordTableArgs]] = None,
        label_count: Optional[int] = None,
        max_capacity: Optional[float] = None,
        max_retries: Optional[int] = None,
        name: Optional[str] = None,
        number_of_workers: Optional[int] = None,
        parameters: Optional[MLTransformParametersArgs] = None,
        role_arn: Optional[str] = None,
        schemas: Optional[Sequence[MLTransformSchemaArgs]] = None,
        tags: Optional[Mapping[str, str]] = None,
        tags_all: Optional[Mapping[str, str]] = None,
        timeout: Optional[int] = None,
        worker_type: Optional[str] = None) -> MLTransformfunc GetMLTransform(ctx *Context, name string, id IDInput, state *MLTransformState, opts ...ResourceOption) (*MLTransform, error)public static MLTransform Get(string name, Input<string> id, MLTransformState? state, CustomResourceOptions? opts = null)public static MLTransform get(String name, Output<String> id, MLTransformState state, CustomResourceOptions options)resources:  _:    type: aws:glue:MLTransform    get:      id: ${id}- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Arn string
- Amazon Resource Name (ARN) of Glue ML Transform.
- Description string
- Description of the ML Transform.
- GlueVersion string
- The version of glue to use, for example "1.0". For information about available versions, see the AWS Glue Release Notes.
- InputRecord List<MLTransformTables Input Record Table> 
- A list of AWS Glue table definitions used by the transform. see Input Record Tables.
- LabelCount int
- The number of labels available for this transform.
- MaxCapacity double
- The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this transform. You can allocate from 2to100DPUs; the default is10.max_capacityis a mutually exclusive option withnumber_of_workersandworker_type.
- MaxRetries int
- The maximum number of times to retry this ML Transform if it fails.
- Name string
- The name you assign to this ML Transform. It must be unique in your account.
- NumberOf intWorkers 
- The number of workers of a defined worker_typethat are allocated when an ML Transform runs. Required withworker_type.
- Parameters
MLTransformParameters 
- The algorithmic parameters that are specific to the transform type used. Conditionally dependent on the transform type. see Parameters.
- RoleArn string
- The ARN of the IAM role associated with this ML Transform.
- Schemas
List<MLTransformSchema> 
- The object that represents the schema that this transform accepts. see Schema.
- Dictionary<string, string>
- Key-value map of resource tags. .If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Dictionary<string, string>
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- Timeout int
- The ML Transform timeout in minutes. The default is 2880 minutes (48 hours).
- WorkerType string
- The type of predefined worker that is allocated when an ML Transform runs. Accepts a value of Standard,G.1X, orG.2X. Required withnumber_of_workers.
- Arn string
- Amazon Resource Name (ARN) of Glue ML Transform.
- Description string
- Description of the ML Transform.
- GlueVersion string
- The version of glue to use, for example "1.0". For information about available versions, see the AWS Glue Release Notes.
- InputRecord []MLTransformTables Input Record Table Args 
- A list of AWS Glue table definitions used by the transform. see Input Record Tables.
- LabelCount int
- The number of labels available for this transform.
- MaxCapacity float64
- The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this transform. You can allocate from 2to100DPUs; the default is10.max_capacityis a mutually exclusive option withnumber_of_workersandworker_type.
- MaxRetries int
- The maximum number of times to retry this ML Transform if it fails.
- Name string
- The name you assign to this ML Transform. It must be unique in your account.
- NumberOf intWorkers 
- The number of workers of a defined worker_typethat are allocated when an ML Transform runs. Required withworker_type.
- Parameters
MLTransformParameters Args 
- The algorithmic parameters that are specific to the transform type used. Conditionally dependent on the transform type. see Parameters.
- RoleArn string
- The ARN of the IAM role associated with this ML Transform.
- Schemas
[]MLTransformSchema Args 
- The object that represents the schema that this transform accepts. see Schema.
- map[string]string
- Key-value map of resource tags. .If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- map[string]string
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- Timeout int
- The ML Transform timeout in minutes. The default is 2880 minutes (48 hours).
- WorkerType string
- The type of predefined worker that is allocated when an ML Transform runs. Accepts a value of Standard,G.1X, orG.2X. Required withnumber_of_workers.
- arn String
- Amazon Resource Name (ARN) of Glue ML Transform.
- description String
- Description of the ML Transform.
- glueVersion String
- The version of glue to use, for example "1.0". For information about available versions, see the AWS Glue Release Notes.
- inputRecord List<MLTransformTables Input Record Table> 
- A list of AWS Glue table definitions used by the transform. see Input Record Tables.
- labelCount Integer
- The number of labels available for this transform.
- maxCapacity Double
- The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this transform. You can allocate from 2to100DPUs; the default is10.max_capacityis a mutually exclusive option withnumber_of_workersandworker_type.
- maxRetries Integer
- The maximum number of times to retry this ML Transform if it fails.
- name String
- The name you assign to this ML Transform. It must be unique in your account.
- numberOf IntegerWorkers 
- The number of workers of a defined worker_typethat are allocated when an ML Transform runs. Required withworker_type.
- parameters
MLTransformParameters 
- The algorithmic parameters that are specific to the transform type used. Conditionally dependent on the transform type. see Parameters.
- roleArn String
- The ARN of the IAM role associated with this ML Transform.
- schemas
List<MLTransformSchema> 
- The object that represents the schema that this transform accepts. see Schema.
- Map<String,String>
- Key-value map of resource tags. .If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Map<String,String>
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- timeout Integer
- The ML Transform timeout in minutes. The default is 2880 minutes (48 hours).
- workerType String
- The type of predefined worker that is allocated when an ML Transform runs. Accepts a value of Standard,G.1X, orG.2X. Required withnumber_of_workers.
- arn string
- Amazon Resource Name (ARN) of Glue ML Transform.
- description string
- Description of the ML Transform.
- glueVersion string
- The version of glue to use, for example "1.0". For information about available versions, see the AWS Glue Release Notes.
- inputRecord MLTransformTables Input Record Table[] 
- A list of AWS Glue table definitions used by the transform. see Input Record Tables.
- labelCount number
- The number of labels available for this transform.
- maxCapacity number
- The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this transform. You can allocate from 2to100DPUs; the default is10.max_capacityis a mutually exclusive option withnumber_of_workersandworker_type.
- maxRetries number
- The maximum number of times to retry this ML Transform if it fails.
- name string
- The name you assign to this ML Transform. It must be unique in your account.
- numberOf numberWorkers 
- The number of workers of a defined worker_typethat are allocated when an ML Transform runs. Required withworker_type.
- parameters
MLTransformParameters 
- The algorithmic parameters that are specific to the transform type used. Conditionally dependent on the transform type. see Parameters.
- roleArn string
- The ARN of the IAM role associated with this ML Transform.
- schemas
MLTransformSchema[] 
- The object that represents the schema that this transform accepts. see Schema.
- {[key: string]: string}
- Key-value map of resource tags. .If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- {[key: string]: string}
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- timeout number
- The ML Transform timeout in minutes. The default is 2880 minutes (48 hours).
- workerType string
- The type of predefined worker that is allocated when an ML Transform runs. Accepts a value of Standard,G.1X, orG.2X. Required withnumber_of_workers.
- arn str
- Amazon Resource Name (ARN) of Glue ML Transform.
- description str
- Description of the ML Transform.
- glue_version str
- The version of glue to use, for example "1.0". For information about available versions, see the AWS Glue Release Notes.
- input_record_ Sequence[MLTransformtables Input Record Table Args] 
- A list of AWS Glue table definitions used by the transform. see Input Record Tables.
- label_count int
- The number of labels available for this transform.
- max_capacity float
- The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this transform. You can allocate from 2to100DPUs; the default is10.max_capacityis a mutually exclusive option withnumber_of_workersandworker_type.
- max_retries int
- The maximum number of times to retry this ML Transform if it fails.
- name str
- The name you assign to this ML Transform. It must be unique in your account.
- number_of_ intworkers 
- The number of workers of a defined worker_typethat are allocated when an ML Transform runs. Required withworker_type.
- parameters
MLTransformParameters Args 
- The algorithmic parameters that are specific to the transform type used. Conditionally dependent on the transform type. see Parameters.
- role_arn str
- The ARN of the IAM role associated with this ML Transform.
- schemas
Sequence[MLTransformSchema Args] 
- The object that represents the schema that this transform accepts. see Schema.
- Mapping[str, str]
- Key-value map of resource tags. .If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Mapping[str, str]
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- timeout int
- The ML Transform timeout in minutes. The default is 2880 minutes (48 hours).
- worker_type str
- The type of predefined worker that is allocated when an ML Transform runs. Accepts a value of Standard,G.1X, orG.2X. Required withnumber_of_workers.
- arn String
- Amazon Resource Name (ARN) of Glue ML Transform.
- description String
- Description of the ML Transform.
- glueVersion String
- The version of glue to use, for example "1.0". For information about available versions, see the AWS Glue Release Notes.
- inputRecord List<Property Map>Tables 
- A list of AWS Glue table definitions used by the transform. see Input Record Tables.
- labelCount Number
- The number of labels available for this transform.
- maxCapacity Number
- The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this transform. You can allocate from 2to100DPUs; the default is10.max_capacityis a mutually exclusive option withnumber_of_workersandworker_type.
- maxRetries Number
- The maximum number of times to retry this ML Transform if it fails.
- name String
- The name you assign to this ML Transform. It must be unique in your account.
- numberOf NumberWorkers 
- The number of workers of a defined worker_typethat are allocated when an ML Transform runs. Required withworker_type.
- parameters Property Map
- The algorithmic parameters that are specific to the transform type used. Conditionally dependent on the transform type. see Parameters.
- roleArn String
- The ARN of the IAM role associated with this ML Transform.
- schemas List<Property Map>
- The object that represents the schema that this transform accepts. see Schema.
- Map<String>
- Key-value map of resource tags. .If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Map<String>
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- timeout Number
- The ML Transform timeout in minutes. The default is 2880 minutes (48 hours).
- workerType String
- The type of predefined worker that is allocated when an ML Transform runs. Accepts a value of Standard,G.1X, orG.2X. Required withnumber_of_workers.
Supporting Types
MLTransformInputRecordTable, MLTransformInputRecordTableArgs        
- DatabaseName string
- A database name in the AWS Glue Data Catalog.
- TableName string
- A table name in the AWS Glue Data Catalog.
- CatalogId string
- A unique identifier for the AWS Glue Data Catalog.
- ConnectionName string
- The name of the connection to the AWS Glue Data Catalog.
- DatabaseName string
- A database name in the AWS Glue Data Catalog.
- TableName string
- A table name in the AWS Glue Data Catalog.
- CatalogId string
- A unique identifier for the AWS Glue Data Catalog.
- ConnectionName string
- The name of the connection to the AWS Glue Data Catalog.
- databaseName String
- A database name in the AWS Glue Data Catalog.
- tableName String
- A table name in the AWS Glue Data Catalog.
- catalogId String
- A unique identifier for the AWS Glue Data Catalog.
- connectionName String
- The name of the connection to the AWS Glue Data Catalog.
- databaseName string
- A database name in the AWS Glue Data Catalog.
- tableName string
- A table name in the AWS Glue Data Catalog.
- catalogId string
- A unique identifier for the AWS Glue Data Catalog.
- connectionName string
- The name of the connection to the AWS Glue Data Catalog.
- database_name str
- A database name in the AWS Glue Data Catalog.
- table_name str
- A table name in the AWS Glue Data Catalog.
- catalog_id str
- A unique identifier for the AWS Glue Data Catalog.
- connection_name str
- The name of the connection to the AWS Glue Data Catalog.
- databaseName String
- A database name in the AWS Glue Data Catalog.
- tableName String
- A table name in the AWS Glue Data Catalog.
- catalogId String
- A unique identifier for the AWS Glue Data Catalog.
- connectionName String
- The name of the connection to the AWS Glue Data Catalog.
MLTransformParameters, MLTransformParametersArgs    
- FindMatches MLTransformParameters Parameters Find Matches Parameters 
- The parameters for the find matches algorithm. see Find Matches Parameters.
- TransformType string
- The type of machine learning transform. For information about the types of machine learning transforms, see Creating Machine Learning Transforms.
- FindMatches MLTransformParameters Parameters Find Matches Parameters 
- The parameters for the find matches algorithm. see Find Matches Parameters.
- TransformType string
- The type of machine learning transform. For information about the types of machine learning transforms, see Creating Machine Learning Transforms.
- findMatches MLTransformParameters Parameters Find Matches Parameters 
- The parameters for the find matches algorithm. see Find Matches Parameters.
- transformType String
- The type of machine learning transform. For information about the types of machine learning transforms, see Creating Machine Learning Transforms.
- findMatches MLTransformParameters Parameters Find Matches Parameters 
- The parameters for the find matches algorithm. see Find Matches Parameters.
- transformType string
- The type of machine learning transform. For information about the types of machine learning transforms, see Creating Machine Learning Transforms.
- find_matches_ MLTransformparameters Parameters Find Matches Parameters 
- The parameters for the find matches algorithm. see Find Matches Parameters.
- transform_type str
- The type of machine learning transform. For information about the types of machine learning transforms, see Creating Machine Learning Transforms.
- findMatches Property MapParameters 
- The parameters for the find matches algorithm. see Find Matches Parameters.
- transformType String
- The type of machine learning transform. For information about the types of machine learning transforms, see Creating Machine Learning Transforms.
MLTransformParametersFindMatchesParameters, MLTransformParametersFindMatchesParametersArgs          
- AccuracyCost doubleTrade Off 
- The value that is selected when tuning your transform for a balance between accuracy and cost.
- EnforceProvided boolLabels 
- The value to switch on or off to force the output to match the provided labels from users.
- PrecisionRecall doubleTrade Off 
- The value selected when tuning your transform for a balance between precision and recall.
- PrimaryKey stringColumn Name 
- The name of a column that uniquely identifies rows in the source table.
- AccuracyCost float64Trade Off 
- The value that is selected when tuning your transform for a balance between accuracy and cost.
- EnforceProvided boolLabels 
- The value to switch on or off to force the output to match the provided labels from users.
- PrecisionRecall float64Trade Off 
- The value selected when tuning your transform for a balance between precision and recall.
- PrimaryKey stringColumn Name 
- The name of a column that uniquely identifies rows in the source table.
- accuracyCost DoubleTrade Off 
- The value that is selected when tuning your transform for a balance between accuracy and cost.
- enforceProvided BooleanLabels 
- The value to switch on or off to force the output to match the provided labels from users.
- precisionRecall DoubleTrade Off 
- The value selected when tuning your transform for a balance between precision and recall.
- primaryKey StringColumn Name 
- The name of a column that uniquely identifies rows in the source table.
- accuracyCost numberTrade Off 
- The value that is selected when tuning your transform for a balance between accuracy and cost.
- enforceProvided booleanLabels 
- The value to switch on or off to force the output to match the provided labels from users.
- precisionRecall numberTrade Off 
- The value selected when tuning your transform for a balance between precision and recall.
- primaryKey stringColumn Name 
- The name of a column that uniquely identifies rows in the source table.
- accuracy_cost_ floattrade_ off 
- The value that is selected when tuning your transform for a balance between accuracy and cost.
- enforce_provided_ boollabels 
- The value to switch on or off to force the output to match the provided labels from users.
- precision_recall_ floattrade_ off 
- The value selected when tuning your transform for a balance between precision and recall.
- primary_key_ strcolumn_ name 
- The name of a column that uniquely identifies rows in the source table.
- accuracyCost NumberTrade Off 
- The value that is selected when tuning your transform for a balance between accuracy and cost.
- enforceProvided BooleanLabels 
- The value to switch on or off to force the output to match the provided labels from users.
- precisionRecall NumberTrade Off 
- The value selected when tuning your transform for a balance between precision and recall.
- primaryKey StringColumn Name 
- The name of a column that uniquely identifies rows in the source table.
MLTransformSchema, MLTransformSchemaArgs    
Import
Using pulumi import, import Glue ML Transforms using id. For example:
$ pulumi import aws:glue/mLTransform:MLTransform example tfm-c2cafbe83b1c575f49eaca9939220e2fcd58e2d5
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- AWS Classic pulumi/pulumi-aws
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the awsTerraform Provider.